
 CARDBUS INTERFACE USER MANUAL

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.comblock.com

© MSS 2000-2005 Issued 9/9/2005

1 Scope
The COM-13xx ComBlock modules are PC cards
which support communication with a host computer
through a standard CardBus interface. These
ComBlock modules can be used as

(a) ready-to-use application-specific
ComBlocks, or

(b) development platforms with user-developed
code.

This manual addresses both use cases. Its scope is
limited to the 32-bit CardBus interface1.

Users of ready-to-use application-specific
ComBlocks should read the following sections:
“Architecture”, “Windows Device Driver
Installation” and on “Applications”.

Developers should also read the sections on
CardBus component which implements the
CardBus interface within the FPGA

The current implementation is subject to the
following limitations:

• CardBus interface with 32-bit memory
mapped and 8-bit I/O mapped data transfers
between ComBlock and host PC

• Windows XP/2000 device driver
.

1 COM-13xx PC Cards also embody the 16-bit PCMCIA
interface, as addressed in a separate user manual.

Throughput:
The CardBus interface sustained (average)
throughput was measured using one-way data
transfer benchmarks as shown below:

Throughput test conditions Throughput
Memory-mapped data transfers: 40 Mbps (Read)

102 Mbps (Write)
I/O-mapped data transfers:

10 Mbps (either
direction)

Host computer: AMD processor 1.2 GHz. C runtime
application, no hard disk data transfers. No other
application running.

2 Architecture
The end-to-end communication architecture
between a host computer and the ComBlock
module as a CardBus peripheral is illustrated
below:

COM-1300
PCMCIA/CardBus
Development
Platform

PC Hardware

PC Operating System

Driver

.dll

Java app
API

CardBus
Component

C/C++
application

Software Development environment

Blue: supplied hardware
Green: supplied ready-to-use software

Yellow: application-level code examples.

2.1 Host side (PC):
In order for a user to setup a CardBus connection
between the host computer and the ComBlock, the
user must first create a Java or C/C++ application.

The Java application calls simple methods
described in the Java Application Programming
Interface (API) described further in this document.

C/C++ applications can call drivers functions
directly as described in the C/C++ Applications
described further in this document.

2.2 Peripheral side (ComBlock):
On the peripheral side, the CardBus connection is
implemented within the FPGA as illustrated below:

 2

Xilinx FPGA
XC3S400

USB 2.0
ControllerFlash
Memory
(FPGA
configurations)

Micro-
Controller

40-pin digital I/O

to/from
other
ComBlocks

 CardBus

to/from PC

32MB
SDRAM
Buffer

40 MHz
Clock

Development Card Hardware Block Diagram

2.3 Supplied Components:
The CardBus software package provides software
to help users and developers create CardBus
communication between the COM-13xx ComBlock
module and a host PC. The software components
include the following:

• Windows device driver for XP/2000 (.sys
and .inf files)

• Java API
• Java simple application code examples
• C/C++ simple application code examples

• config_c, iorw_c, memory_c NGC
components for integration within the
VHDL code

The CardBus software package is available in the
ComBlock CD and can also be downloaded from
www.comblock.com/download/CardBus.zip

3 Windows Device Driver
Installation

When connecting the COM-1300 CardBus interface
for the first time, the user is prompted for new
hardware installation. Follow the step by step
instructions shown below each screen shot.

Click on Next.

http://www.comblock.com/download/CardBus.zip

Check “Display a list of known drivers for the
device so that I can choose a specific driver”. Click
“Next”.

Select “Other Devices”. Go to the Next screen.

Click on “Have Disk”.

Point to the location where the driver files are and
click OK.

Go to the next screen.

Click on Next.

The last window for the New Hardware Wizard
should appear, as shown below, for a successfully
installed device.

 3

 4

Click on Finish.

At this point, the driver for COM-1300 with
CardBus interface has been successfully installed
and next time the device is plugged in, the system
automatically finds appropriate driver. With the
driver installed, the user can talk to the device,
using the applications.

4 Applications

4.1 Java API
The Java API is documented in
…\Java\API\cardbus.html and can be found in the
CardBus software package.

The applications call simple methods to get a
handle, dispose a handle, read and write.

The DLL, which links the Java application to the
drivers, is provided in the CardBus software
package.

The Java application can transfer data buffers in the
range of 0 to 2,048 Bytes to/from the CardBus
target. When addressing a memory-mapped stream,
all transfers are multiple of 4-byte words.

Flow control is implemented by checking the
number of bytes actually transmitted at the end of
the transaction.

4.2 C/C++ Applications
The applications in C++ contain functions to open
the device handle, send/receive data and close the
handle.

Application examples can be found in the CardBus
software package.

4.3 Addressing Multiple
ComBlocks

Multiple ComBlocks can be attached to a Host PC.
Each ComBlock can be identified by a unique
device name assigned when it is attached. The
device name would be “comblock_cardbus_X”
where X is a number starting with 0 and it depends
on the order in which the ComBlock has been
attached. The user applications can communicate
with any of the ComBlocks exclusively by
addressing them with the device name.

Application 1

Host Side

Peripheral Side

comblock_cardbus_0

Application 2

comblock_cardbus_1

Data Stream 1

Data Stream 2

Data Stream 1

Data Stream 2

Sample communication model 1: Two user applications
communicating with two ComBlocks.

Application 1

Host Side Peripheral Side

comblock_cardbus_0

comblock_cardbus_1

Data Stream 1

Data Stream 2

Data Stream 1

Data Stream 2

Sample communication model 2: One user application
communicating with two.

5 FPGA/VHDL/DRIVER
Development

This section describes how to create a custom
application that makes use of the CardBus medium
on the ComBlock COM-1300 FPGA-based

development platforms. This section can be skipped
by users of ready-to-use application-specific
ComBlock modules.

This section focuses primarily on the peripheral
side of the CardBus connection.

5.1 Host <-> Target
Communication Methods

In its basic form the CardBus component supports
two methods of bi-directional data exchange
between host and target:

- One virtual bi-directional data stream is I/O
mapped and exchanges 8-bit wide data.

- The other virtual bi-directional data stream is
memory-mapped, exchanges 32-bit words and
is optimized for maximum throughput.

The intent is to use the I/O mapped data stream to
communicate with ComBlock itself, for monitoring
and control purposes. The Memory-mapped data
stream’s intended use is for transferring payload
data.

The addressing scheme is the same for both I/O and
Memory-mapped data streams:
- Base address is 0.
- Address range used: 0 - 16

Beyond the basic software, developers can create
multiple I/O and Memory-mapped data streams by
instantiating multiple VHDL components and
specifying non-overlapping address ranges.

5.2 Driver Installation
Upon insertion of a COM-1300 (CardBus
interface), the bus driver will read the configuration
header, in particular, the vendor ID and product ID,
from the FPGA. Then it searches through the
system registries to find matches with the vendor ID
and product ID.

For the first-time installation of COM-1300, the
operating system will discover that the vendor ID
and product ID are new to the system registries. The
user will be directed through a new hardware
installation.

The New Hardware Wizard will check the INF file
in the specified directory to see if it matches the

vendor ID and product ID the host read from the
hardware. If matched, the host will find the required
drivers (.sys) defined in the .inf file, and copies the
drivers to a location described in the .inf file
(C:\WINDOWS\system32\drivers by default).

At this point, the .inf and .sys files will be copied by
the operating system, and the system registry will
be updated to include this device entry. Next time
the device is plugged in, the system automatically
finds it in the registry and links the device to the
appropriate driver.

5.3 CardBus Component
The CardBus implementation on the target side is
encapsulated within three NCG components,
namely, config_c.ngc, iorw_c.ngc and
memory_c.ngc. This implementation supports two
bi-directional data streams:
- One virtual data stream that is I/O mapped and

exchanges 8-bit wide data.
- The other virtual data stream that is memory-

mapped, exchanges 32-bit words

Data is exchanged with the CardBus component
through a 16Kbit dual-port (elastic) buffer in each
direction.

The data streams are to be used in conjunction with
Java or C/C++ applications. The user applications
can communicate with either of the two data
streams or both.

Application 1

Host Side Peripheral Side

Data Stream 1

Application 2 Data Stream 2

Sample communication model 3: Two user applications
communicating with two independent data streams on a
single ComBlock.

 5

Application 1

Host Side Peripheral Side

Data Stream 1

Data Stream 2

Sample communication model 4: One user application
communicating with two independent data streams on a
single ComBlock.

5.3.1 Interface
The component is described primarily by its
interface definition:

entity CARDBUS is
 port (

--// Clocks, reset
CLK_P: in std_logic;
 -- Main processing or I/O clock used outside of this component.
 -- All VHDL user application interface signals are synchronous with
CLK_P
 -- Key assumptions about speed: CLK_P > 8 MHz
ASYNC_RESET: in std_logic;
 -- asynchronous reset at power up. MANDATORY.

--// Host bus adapter interface:
CB_CARD_ADDR_DATA: inout std_logic_vector(31 downto 0);
 -- Address and Data

--// Command
CB_CARD_CC_BE_N: in std_logic_vector(3 downto 0);
 -- CardBus command (defines transaction type) or Byte Enable,

--// System
CB_CARD_CCLK: in std_logic;
 -- CardBus clock signal, 0 to 33 MHz. Global clock.
CB_CARD_CCLKRUN_N: inout std_logic;
 -- Asserted if clock runs normally
 -- deasserted before clock stops or slow down (I/O)
CB_CARD_CRST_N: in std_logic;
 -- Reset signal
 -- Forces CardBus configuration registers to an initialized state

--// Interface Control
CB_CARD_CPAR: inout std_logic;
 -- Parity signal (I/O)
CB_CARD_CFRAME_N: in std_logic;
 -- Data Frame indicator
CB_CARD_CTRDY_N: out std_logic;
 -- Target ready
CB_CARD_CIRDY_N: in std_logic;
 -- Initiator ready
CB_CARD_CSTOP_N: out std_logic;
 -- Target wants to stop the transaction
CB_CARD_CDEVSEL_N: out std_logic;
 -- Device select

 -- Asserted by target upon successful decoding of the address and
command
CB_CARD_CBLOCK_N: in std_logic;
 -- Lock the currently addressed memory target

--// Miscellaneous Signals
CB_CARD_CAUDIO_N: out std_logic;
 -- Card audio output. Not used: FPGA to pull high.
CB_CARD_CSTSCHG_N: out std_logic;
 -- STSCHG# During memory or I/O interface

--// Error Reporting
CB_CARD_CPERR_N: out std_logic;
 -- Data parity error
CB_CARD_CSERR_N: out std_logic;
 -- System error
CB_CARD_CINT_N: out std_logic;
 -- Interrupt request

--// Arbitration (Bus Master Only)
CB_CARD_CGNT_N: in std_logic;
 -- Bus arbitration grant. Not used BUT must be
 -- pulled high according to specs.
 -- USE as input and PULL-UP
CB_CARD_CREQ_N: in std_logic;
 -- Arbitration request. MUST BE DECLARED AND USED AS
INPUT.
 -- (otherwise alternative assignement for pin N1 conflicts
 -- with proper operation) !!!!!

--// user interfaces
--// Stream1. 32-bit Memory read/write transactions
-- Synchronous with CLK_P clock
DATA1_OUT: out std_logic_vector(7 downto 0);
DATA1_OUT_SAMPLE_CLK: out std_logic;

-- read DATA1_OUT at rising edge of CLK_P when
-- DATA1_OUT_SAMPLE_CLK = '1'
-- Note1: the user is responsible for checking
-- DATA1_OUT_BUFFER_EMPTY before

 -- reading.
-- Note 2: When the elastic buffer is not empty, DATA1_OUT is
-- present at this interface even before requesting it. The request
-- DATA1_OUT_SAMPLE_CLK_REQ only moves the read pointer
-- to the next read location.

DATA1_OUT_BUFFER_EMPTY: out std_logic;
DATA1_OUT_SAMPLE_CLK_REQ: in std_logic;
 -- requests data. If no data is available in the buffer, the
 -- DATA1_OUT_SAMPLE_CLK will stay low.
 -- (flow control)

DATA1_IN: in std_logic_vector(7 downto 0);
DATA1_IN_SAMPLE_CLK: in std_logic;

-- read DATA1_IN at rising edge of CLK_P when
-- DATA1_IN_SAMPLE_CLK = '1'

DATA1_IN_SAMPLE_CLK_REQ: out std_logic;
 -- requests data when the input elastic buffer is less than half full.
 -- (flow control)

--// user interfaces
--// Stream2. 8-bit I/O read/write transactions at I/O address 0
-- Synchronous with CLK_P clock
DATA2_OUT: out std_logic_vector(7 downto 0);
DATA2_OUT_SAMPLE_CLK: out std_logic;

-- read DATA2_OUT at rising edge of CLK_P when
-- DATA2_OUT_SAMPLE_CLK = '1'
-- Note1: the user is responsible for checking –
-- DATA2_OUT_BUFFER_EMPTY before reading.
-- Note 2: When the elastic buffer is not empty, DATA2_OUT is
-- present at this interface even before requesting it. The request –
-- DATA2_OUT_SAMPLE_CLK_REQ

 -- only moves the read pointer to the next read location.
DATA2_OUT_BUFFER_EMPTY: out std_logic;
DATA2_OUT_SAMPLE_CLK_REQ: in std_logic;
 -- requests data. If no data is available in the buffer, the

 6

 7

 -- DATA2_OUT_SAMPLE_CLK will stay low.
 -- (flow control)

DATA2_IN: in std_logic_vector(7 downto 0);
DATA2_IN_SAMPLE_CLK: in std_logic;

-- read DATA2_IN at rising edge of CLK_P when
-- DATA2_IN_SAMPLE_CLK = '1'

DATA2_IN_SAMPLE_CLK_REQ: out std_logic
 -- requests data when the input elastic buffer is less than half full.
 -- (flow control)

--// Test Points
-- Test points are under the shield. 6 at the edge connector.
--TEST_POINTS: out std_logic_vector(6 downto 1)
);
end entity;

5.3.2 Configuration Header
The configuration Header is a data structure stored
in non-volatile memory within the CardBus. It is
read by the operating system to determine what
kind of CardBus is installed, along with its speed,
size and the system resources required by the card.
A detailed description of the CardBus
Configuration Header is provided below. The
operating system reads all the Configuration Header
registers sequentially starting from address 0.

Offset Data

(hex)
Description and Interpretation

0 FF Vendor ID
 FE
2 01 Device ID
 01
4 03 Command Register: Device

Memory, I/O response enable
 00
6 00 Status Register
 00
8 00 Revision ID
9 00 Class code: Generic PCI device
 00
 00
12 00 Cache Line Size
13 00 Latency Timer
14 00 Header Type: single function
15 00 BIST
16* 01 BAR 0 (I/O)
 xx
 xx
 xx
20* 00 BAR 1 (Memory)
 00
 x0
 xx

24 00 CardBus CIS pointer
 00
 00
 00
28 00 Subsystem Vendor ID
 00
30 00 Subsystem ID
 00
32 00 Expansion ROM Base Address
 00
 00
 00
36 00 Capabilities Pointer
37 00 Reserved
 00
 00
40 00 Reserved
 00
 00
 00
44 01 Interrupt Line
45 00 Interrupt Pin
46 00 Min_Gnt
47 00 Min_lat
* ‘x’ represents that the host writes to these bits.

5.3.3 Synthesis Statistics
The FPGA size occupied by the CardBus
component is as follows:

Design Summary:
Logic Utilization:
Number of Slice Flip Flops: 270 out of 7,168 3%
Number of 4 input LUTs: 469 out of 7,168 6%
Logic Distribution:
Number of occupied Slices: 366 out of 3,584 10%
Number of Slices containing only related logic: 366 out
of 366 100%
Number of Slices containing unrelated logic: 0 out of
366 0%
Total Number 4 input LUTs: 551 out of 7,168 7%
 Number used as logic: 469
 Number used as a route-thru: 82
 Number of bonded IOBs: 120 out of 173 69%
 IOB Flip Flops: 44
 Number of Block RAMs: 5 out of 16 31%
 Number of GCLKs: 2 out of 8 25%

5.4 VHDL code template
A VHDL template project is available on-line at
www.comblock.com/download/com1300template_
001.zip

http://www.comblock.com/download/com1300template_001.zip
http://www.comblock.com/download/com1300template_001.zip

 8

The template project (-C option) includes:

• Top-level VHDL source code (.vhd), for
CardBus interface.

• NGC components for config_c, iorw_c and
memory_c, and the SDRAM driver.

• the constraint file (.ucf) listing all pin
assignments.

• The Xilinx project with the synthesis and
implementation settings.

• The resulting bit files (.mcs) ready to be
loaded into flash memory.

	Scope
	Architecture
	Host side (PC):
	Peripheral side (ComBlock):
	Supplied Components:

	Windows Device Driver Installation
	Applications
	Java API
	C/C++ Applications
	Addressing Multiple ComBlocks

	FPGA/VHDL/DRIVER Development
	Host <-> Target Communication Methods
	Driver Installation
	CardBus Component
	Interface
	Configuration Header
	Synthesis Statistics

	VHDL code template

