Com Block

COM-1827SOFT CPM Modulator VHDL source code overview / IP core

Overview

The COM-1827SOFT CPM MOD is a Continuous Phase Modulator written in generic VHDL.

The entire **VHDL source code** is deliverable. It is portable to a variety of FPGA targets.

Key features and performance:

- CPM is a set of constant amplitude phase modulations well suited for operation through power amplifiers near saturation.
- Flexible programmable features:
 - Symbol rate up to $f_{clk}/4$, where f_{clk} is the processing clock frequency.
 - FSK, MSK, GFSK, GMSK, PCM/FM, SOQPSK-MIL and SOQPSK-TG
- Provided with IP core:
 - VHDL source code
 - Matlab .m file for generating stimulus files for comparison purposes.
 - VHDL testbenches (back-to-back modem or stimulus file input)
 - PRBS11 test sequence generator, AWGN noise generator

Configuration

Run-time configuration parameters

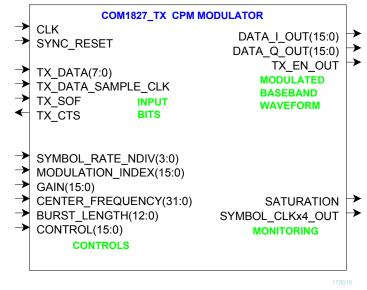
The user can set and modify the following controls at run-time through the top level component interface:

Modulator Parameters	Configuration
SYMBOL_RATE_NDIV	symbol rate expressed as (modulator processing clock)/2^NDIV
	Range 0 to 15 for division ratios ranging from 1 to 32768
MODULATION_INDEX	modulation index h. unsigned fixed-point format 4.12.
	Typical values for h are 0.5 (0x0800),
	0.7 (0x0B33)
GAIN	output amplitude scaling factor. 15-bit unsigned
CENTER_FREQ	modulated signal center frequency. Expressed as fc/modulator processing clock * 2^32
CENTER_FREQ	modulated signal center frequency. Expressed as fc/modulator processing clock * 2^32
BURST_LENGTH	A synchronization word is inserted periodically between frames (to resolve any phase ambiguity at the receiver).
	This just includes the data field, not the 32-bit preamble.
	Constraint: BURST_LENGTH is a multiple of 8 bits.
	composite limit: preamble+sync+BURST_ LENGTH < 8191
CONTROL	bits 2:0 modulation order M = 3 for SOQPSK, 0

otherwise
bits 7:4 frequency shaping
filter selection
0 = FSK
1 = PCM/FM
2 = GMSK/GFSK BT=0.7
3 = GMSK/GFSK BT=0.5
4 = GMSK/GFSK BT=0.3
5 = SOQPSK-MIL
6 = SOQPSK-TG
8 = GMSK/GFSK
BT=0.25
bits 9:8 test mode: 00 no
test, 01 = PRBS11, 11 =
unmodulated carrier
bit 10: always '1' to enable
sync word insertion
bit 11: spectrum
inversion. invert Q. on (1)
or off (0)

I/Os

General


CLK: input

The synchronous clock. The user must provide a global clock (use BUFG). The CLK timing period must be constrained in the .xdc file associated with the project.

SYNC_RESET: input

Synchronous reset. The reset MUST be exercised at least once to initialize the internal variables. It must be exercised whenever a control parameter is changed.

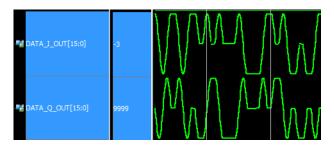
Modulator

TX_DATA(7:0): Input data byte. The MSb is sent first.

TX_DATA_SAMPLE_CLK: input.

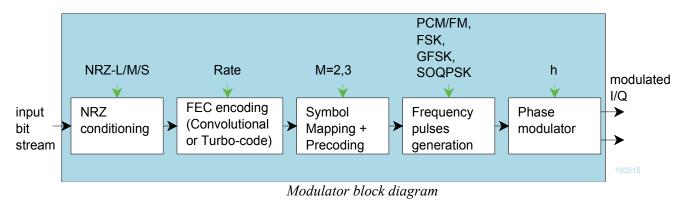
1 CLK-wide pulse indicating that TX_DATA is valid.

TX_SOF: optional input Start Of Frame. 1 CLKwide pulse. The SOF is aligned with **TX_DATA_SAMPLE_CLK**.


TX_CTS: output.

Clear-To-Send flow control. '1' indicates that the modulator is ready to accept another input byte. Thanks to an input elastic buffer, the data source is allowed to send a few more bytes after TX_CTS goes low.

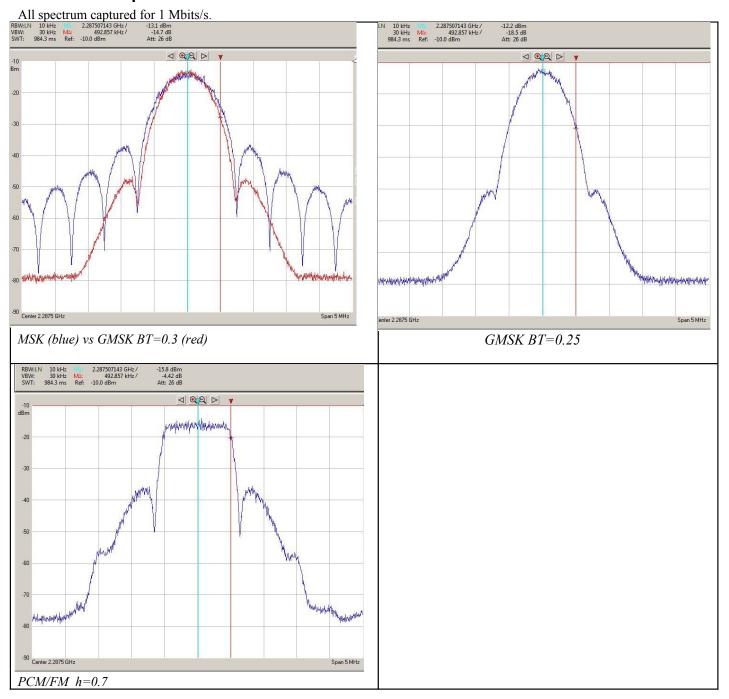
к	1					
NC_RESET	0					
_DATA[7:0]	55	9a	5a	X 8e	<u>55</u>	
_DATA_SAMPLE_CLK	1					
_SOF	1					
CTS	0					

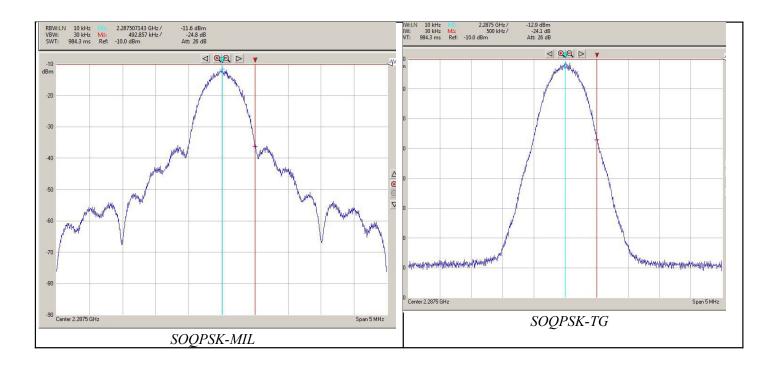

Modulator input flow control example

DATA_I/Q_OUT(15:0): Modulated baseband output samples (I = in-phase, Q = quadrature). One output sample every clock. Format: 2's complement (signed)

TX_EN_OUT: goes low to turn off an external power amplifier when the modulator is not receiving any input data.

Design considerations


Frequency pulse generation


An FIR filter shapes the frequency pulses. The FIR coefficients are stored in a lookup table, sampled at 4 samples/symbol. See CPM_FILTERSx4.vhd. The table is large enough to store multiple frequency pulse shapes: rectangular pulse for MSK, Gaussian pulse for GMSK, raised cosine for PCM/FM, etc.

The Matlab program /matlab/siggen_fsk1.m is used to generate the FIR coefficients.

Performance

Transmitted spectrum

Software Licensing

This software is supplied under the following key licensing terms:

- 1. A nonexclusive, nontransferable license to use the VHDL source code internally, and
- 2. An unlimited, royalty-free, nonexclusive transferable license to make and use products incorporating the licensed materials, solely in bit stream format, on a worldwide basis.

The complete VHDL/IP Software License Agreement can be downloaded from http://www.comblock.com/download/softwarelicense.pdf

Portability

The VHDL source code is written in generic VHDL and thus can be ported FPGAs from various vendors. See the limitation below.

Limitation

1. The modulator requires a processing and DAC clock in the form (symbol rate * 2^N), where N is an integer in the range 2-15. The COM1827SOFT includes a Xilinx primitive to program the clock frequency, allowing any target symbol rate with a precision of 1% or better. This Xilinx primitive is restricted to the Xilinx 7-series FPGAs (Artix, Kintex, Virtex, Zynq). For other target platforms, the user is responsible for generating the processing/DAC clock.

Configuration Management

The current software revision is 1c.

Directory	Contents
/doc	Specifications, user manual, implementation documents
/src	.vhd source code,.pkg packages, .xdc constraint files (Xilinx) One component per file.
/sim	VHDL test benches
/matlab	Matlab .m file for generating stimulus files for VHDL simulation and for end-to-end

	BER performance analysis at various signal to noise ratios
/bin	.bit configuration files (for use with ComBlock COM-1800 FPGA development platform)

Project files:

Xilinx ISE 14 project file: com-1827.xise Xilinx Vivado v2015.2 project file: project_1.xpr

VHDL development environment

The VHDL software was developed using the following development environment:

- (a) Xilinx ISE 14.7 for synthesis, place and route
- (b) Xilinx Vivado 2015.2 for synthesis, place and route and VHDL simulation

The entire project fits easily within a Xilinx Artix7-100T. Therefore, the ISE project can be processed using the free Xilinx WebPack tools.

Device Utilization Summary

The modulator size is fixed (not parameterized). Device: Xilinx Artix7-100T

Modulator		% of Xilinx Artix7-100T
Registers	1868	1%
LUTs	2078	3%
Block RAM/FIFO	10	7%
DSP48	11	4%
GCLKs	1	3.1%

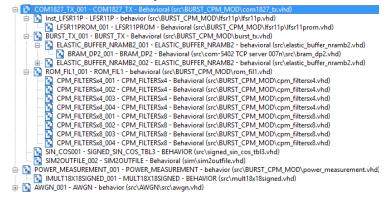
Clock and decoding speed

The entire design uses a single global clock CLK. Typical maximum clock frequencies for various FPGA families are listed below:

Device family	Modulator
Xilinx Artix 7 -1 speed grade	160 MHz

Xilinx Kintex-7 -2	
speed grade	

Ready-to-use Hardware


The COM-1827SOFT was developed on, and therefore ready to use on the following commercial off-the-shelf hardware platform:

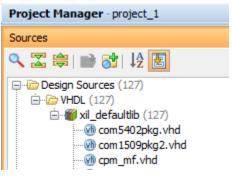
FPGA development platform

<u>COM-1800</u> FPGA (XC7A100T) + ARM + DDR3 SODIMM socket + GbE LAN development platform

VHDL components overview

Modulator top level

COM1827_TX.vhd generates complex baseband continuous phase-modulated samples from byte-size input data.


The *BURST_TX.vhd* component stores input data in an elastic input buffer, then packs input bits into symbols (1,2,3 bits/symbol) at the specified symbol rate. It also stops the transmitter when the input elastic buffer is empty.

BRAM_DP2.vhd is a generic dual-port memory, used as input and output elastic buffers. Memory is inferred (no Xilinx primitive is used).

ROM_FIL1.vhd implements an FIR filter to shape the frequency pulses. The FIR filter coefficients for various modulation schemes (Gaussian, raised cosine, etc) are stored in the *CPM_FILTERSx4.vhd* ROM. *SIGNED_SIN_COS_TBL3.vhd* stores sine and cosine functions in ROM. It is used to convert phase to complex I/Q baseband output samples.

COM1827_TOP.vhd: is mostly a use example when the CPM modem is implemented on a ComBlock COM-1800 FPGA development platform. Please note that this top component can't be simulated as it makes many references to other components outside the scope of the modem proper (TCP stack, turbo codec, etc)

Note for Xilinx Vivado: when creating the project, the file priority order is unimportant, except for the three packages below which must be placed with a higher priority order:

Ancillary components

LFSR11P.vhd is a pseudo-random sequence generator used for test purposes. It generates a PRBS11 test sequence commonly used for bit error rate testing at the receiving end of a transmission channel.

AWGN.vhd generates a precise Additive White Gaussian Noise. The noise bandwidth is 2*symbol rate.

INFILE2SIM.vhd reads an input file. This component is used by the testbench to read a modulated samples file generated by the siggen_fskl.m Matlab program for various Eb/No and frequency offset cases.

SIM2OUTFILE.vhd writes three 12-bit data variables to a tab delimited file which can be subsequently read by Matlab (load command) for plotting or analysis.

VHDL simulation

VHDL testbenches are located in the /sim directory.

The tbcom1827_modemonly.vhd connects the modulator and a demodulator back to back. End-to-end BER tests can be performed as the com1827_tx.vhd transmitter includes a built-in pseudo-random sequence generator and the com1827_rx.vhd receiver includes a built-in Bit Error Rate Tester.

Matlab simulation

Matlab programs are located in the /matlab directory.

The siggen_fskl.m program generates a stimulus file input.txt for use as input to a demodulator VHDL simulation (tbcom1827_demodonly.vhd). The stimulus file includes a continuous stream of pseudo-random (PRBS11) data bits, convolutional code encoding, continuous phase modulation, additive white Gaussian noise, channel filtering, frequency translation and quantization.

Specifications

[1] IRIG-106 "Telemetry Standard RCC Document 106-07, Chapter 2", for SOQPSK TG

[2] MIL-STD-188-181B for SOQPSK-MIL

ComBlock Ordering Information

COM-1827SOFT CPM modulator, VHDL source code / IP core

Contact Information

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: info@comblock.com