Key Features

- Digital BPSK/QPSK/OQPSK Demodulator.
- Variable data rates up to 20 Mbps (QPSK) / 10 Mbps (BPSK).
- Differential / non-differential decoding.
- Includes raised cosine square root filter with 20%, 25%, or 40% rolloff options.
- Demodulation losses less than 0.5 dB with respect to theory at $E_b/N_0 = 1$ dB.
- Demodulation threshold < -2 dB E_b/N_0.
- Automatic frequency acquisition range up to +/- 50% of the symbol rate.
- 4-bit soft-quantized demodulated bits.
- Extensive monitoring:
 - Carrier lock
 - Frequency error
 - AGC gain
 - SNR estimate
- Connectorized 3”x 3” module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Single 5V supply. Interfaces with 5V and 3.3V logic.

For the latest data sheet, please refer to the ComBlock web site: www.comblock.com/download/com1001.pdf. These specifications are subject to change without notice.

For an up-to-date list of ComBlock modules, please refer to www.comblock.com/product_list.htm.
Input Module Interface

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_I_IN[9:0]</td>
</tr>
<tr>
<td>Modulated input signal, real axis. 10-bit precision. Format: 2’s complement or unsigned. Unused LSBs are pulled low.</td>
</tr>
<tr>
<td>DATA_Q_IN[9:0]</td>
</tr>
<tr>
<td>Modulated input signal, imaginary axis. 10-bit precision. Same format as DATA_I_IN. Unused LSBs are pulled low.</td>
</tr>
<tr>
<td>SAMPLE_CLK_IN</td>
</tr>
<tr>
<td>Input signal sampling clock f_s. One CLK-wide pulse. Read the input signal at the rising edge of CLK when SAMPLE_CLK_IN = ‘1’. Signal is pulled-up.</td>
</tr>
<tr>
<td>AGC_OUT</td>
</tr>
<tr>
<td>Output. When this demodulator is connected directly to an analog receiver, it generates a pulse-width modulated signal to control the analog gain prior to A/D conversion. The purpose is to use the maximum dynamic range while preventing saturation at the A/D converter. 0 is the maximum gain, +3V is the minimum gain.</td>
</tr>
<tr>
<td>CLK_IN</td>
</tr>
<tr>
<td>Input reference clock for synchronous I/O and processing. Yields internal CLK clock. Maximum frequency f_{clk} is 40 MHz.</td>
</tr>
</tbody>
</table>

Two basic types of output connections are available for user selection:

- direct connection between demodulator and data destination.
- Shared data bus connecting multiple demodulators to a single data destination (for signal diversity combining)

Output Module Interface

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_I_OUT[3:0]</td>
</tr>
<tr>
<td>4-bit soft-quantized demodulated bits, real axis. Unsigned representation: 0000 for maximum amplitude ‘0’, 1111 for maximum amplitude ‘1’. When the serial output mode is selected, I and Q samples are transmitted one after another on this interface. I is transmitted before Q.</td>
</tr>
<tr>
<td>DATA_Q_OUT[3:0]</td>
</tr>
<tr>
<td>4-bit soft-quantized demodulated bits, imaginary axis. Same format as DATA_I_OUT. When the serial output mode is selected, this interface is unused.</td>
</tr>
<tr>
<td>BIT_CLK_OUT</td>
</tr>
<tr>
<td>Demodulated bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK when BIT_CLK_OUT = ‘1’.</td>
</tr>
<tr>
<td>CARRIER_LOCK</td>
</tr>
<tr>
<td>‘1’ when the demodulator is locked, ‘0’ otherwise.</td>
</tr>
<tr>
<td>CLK_OUT</td>
</tr>
<tr>
<td>Output reference clock f_{clk}. Typically 40 MHz.</td>
</tr>
</tbody>
</table>

Serial Monitoring & Control

| DB9 connector. 115 Kbaud/s. 8-bit, no parity, one stop bit. No flow control. |

Power Interface

4.75 – 5.25VDC. Terminal block. Power consumption is approximately proportional to the CLK frequency.
Configuration

Complete assemblies can be monitored and controlled centrally over a single serial (included), LAN/TCP-IP, USB 2.0 or PCMIA/CardBus connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

Most processing is done at the sampling rate / $f_{\text{sample clk}} = 4 \times \text{symbol rate}$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal symbol rate x 4 (fsymbol rate x 4)</td>
<td>24-bit integer expressed as $\frac{f_{\text{symbol rate}} \times 4 \times 2^{23}}{f_{\text{s}}}$, where f_{s} is the input sampling rate as determined by the SAMPLE_CLK_IN input signal. Alternatively, the user can select to ignore the external sampling clock and use the processing clock f_{clk} instead (see REG7 bit 6 control). In the latter case, $f_{\text{s}} = f_{\text{clk}}$. Use of the COM-1001 at symbol rates below 100 Ksymbols/s is possible but can be complex because of effects such as of phase noise, frequency acquisition, oscillator stability, microphonics, etc.</td>
</tr>
<tr>
<td>REG0 = bit 7-0 REG1 = bit 15-8 REG2 = bit 23-16</td>
<td>Nominal carrier center frequency (f_c)</td>
</tr>
<tr>
<td>REG3 = bit 7-0 REG4 = bit 15-8 REG5 = bit 23-16</td>
<td>Input sample format</td>
</tr>
<tr>
<td>Carrier frequency tracking loop gain</td>
<td>0 = nominal 1 = 2x loop gain 2 = 4x loop gain 3 = 8x loop gain</td>
</tr>
<tr>
<td>Spectrum inversion</td>
<td>Enable the extended frequency acquisition over +/- 50% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. A larger frequency acquisition can be achieved than with the Costas carrier tracking loop or the AFC, but the acquisition time is slower. The extended frequency acquisition mode should only be used during acquisition as it interferes with the AFC and Costas Loop operation. 0 = disabled. 1 = enabled. REG6 bit 4</td>
</tr>
<tr>
<td>Differential decoding</td>
<td>0 = off 1 = on REG6 bit 6</td>
</tr>
<tr>
<td>Output sample format</td>
<td>00 = I/Q parallel 01 = I/Q serial, I before Q (never use with BPSK as there is no information data on the Q channel) REG7 bits 1-0</td>
</tr>
<tr>
<td>Point-to-point vs shared bus output</td>
<td>Controls whether the output connection is point-to-point or multipoint-to-point over a shared data bus (via a COM-9003 multiplexing connector for example). The J3 output connector pinout is affected by this control bit. 0 = direct connection. Point to point.</td>
</tr>
</tbody>
</table>
Modulation

- **00 = BPSK**
- **01 = QPSK**
- **10 = OQPSK** (1 channel is delayed by $\frac{1}{2}$ a symbol w.r.t. the Q channel)

REG7 bit 3

Force sampling rate

$f_s = f_{\text{clk}}$

- **Ignore external SAMPLE_CLK_IN**
- **sampling clock and force internal resampling f_s **to f_{clk}.**

REG7 bit 5 - 4

Force (Re-)acquisition

- **A one-time write of ‘1’ forces the carrier loops (carrier PLL, AFC) back into acquisition mode.** This can be used to get out of any potential false lock condition. There is no need to clear this bit.

REG7 bit 6

Bus address

- **Unique 4-bit address identifying this module on the output bus (if the output bus is enabled in REG7 bit 3). Ignore otherwise.** This module acts as bus slave: it performs the read transaction requested by the bus master if and only if the bus address matches its own address defined here. This address must be unique among modules connected to the same bus in order to avoid conflicts.

REG8 bits 3-0

Monitoring

Monitoring registers are read-only.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Monitoring</td>
</tr>
<tr>
<td>frequency</td>
<td>Offset with respect to the nominal carrier frequency. 24-bit signed integer (2’s complement) expressed as fedelta * 2^{24} / symbol rate x 4</td>
</tr>
<tr>
<td>offset</td>
<td>SREG8 = bit 7 – 0</td>
</tr>
<tr>
<td></td>
<td>SREG9 = bit 15 – 8</td>
</tr>
<tr>
<td></td>
<td>SREG10 = bit 23 – 16</td>
</tr>
<tr>
<td>AGC gain</td>
<td>Digital AGC gain settings 8 bit unsigned</td>
</tr>
<tr>
<td></td>
<td>SREG11 bit 7-0</td>
</tr>
<tr>
<td>NSR</td>
<td>Noise to signal ratio. Variance of the 4-bit soft-quantized demodulated samples at the optimum sampling instant averaged over 4096 symbols. Non-linear scale. Approximates $1/SNR$. A few reference points: SNSR = 24 -> SNR = 8.6 dB SNSR = 34 -> SNR = 5.6 dB</td>
</tr>
</tbody>
</table>

Lock status

SREG13 bit 0

- **0 = unlocked**
- **1 = locked**

I sample

- **I sample after digital AGC. Format: 8-bit 2’s complement.**
- **This monitoring point can be used in conjunction with the Q sample to plot a scatter diagram.**

SREG14 bits 7-0

Q sample

- **I sample after digital AGC. Format: 8-bit 2’s complement.**
- **This monitoring point can be used in conjunction with the Q sample to plot a scatter diagram.**

SREG15 bits 7-0

Option o / **Version v**

- Returns ‘1001ov’ when prompted for option o and version v numbers.

Default configuration at manufacturing:

REG0 = 0x00

REG1 = 0x00

REG2 = 0x40

REG3 = 0x00

REG4 = 0x00

REG5 = 0x00

REG6 = 0x82

REG7 = 0x00

Configuration example:

REG0 = 0x52

REG1 = 0xB8

REG2 = 0x7E

REG3 = 0x00

REG4 = 0x00

REG5 = 0x00

REG6 = 0x80

REG7 = 0x11

- **symbol rate x 4 = 39.6 MHz**
- **offset carrier = 0 Hz**
- **2’s complement input format**
- **nominal loop gain**
- **no spectrum inversion**
- **no differential decoding**
- **serial output**
- **QPSK**

8 bit unsigned.

SREG12 bits 7 – 0

Lock status

SREG13 bit 0

- **0 = unlocked**
- **1 = locked**

I sample

- **I sample after digital AGC. Format: 8-bit 2’s complement.**
- **This monitoring point can be used in conjunction with the Q sample to plot a scatter diagram.**

SREG14 bits 7-0

Q sample

- **I sample after digital AGC. Format: 8-bit 2’s complement.**
- **This monitoring point can be used in conjunction with the Q sample to plot a scatter diagram.**

SREG15 bits 7-0

Option o / **Version v**

- Returns ‘1001ov’ when prompted for option o and version v numbers.
Timing

The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

The maximum demodulated data rate is equal to half of the reference clock frequency.

Input

<table>
<thead>
<tr>
<th>Input read at rising edge of CLK</th>
</tr>
</thead>
</table>
| SAMPLE_CLK_IN
| DATA_IN |

Output

(Point to point connection, REG7 bit3 = ‘0’)

<table>
<thead>
<tr>
<th>Output read at rising edge of CLK</th>
</tr>
</thead>
</table>
| CLK
| BIT_CLK_OUT
| DATA_OUT |

Test Points

Test points are provided for easy access by an oscilloscope probe.

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>Carrier lock. Lock status is based on the rms phase error. This test point can be ambiguous as a ‘no input signal’ condition may yield be confused as carrier lock. Use in conjunction with bit transition (TP7) to remove any ambiguity.</td>
</tr>
<tr>
<td>TP2</td>
<td>Frequency acquisition in progress</td>
</tr>
<tr>
<td>TP3</td>
<td>Recovered carrier</td>
</tr>
<tr>
<td>TP4</td>
<td>Recovered timing (2*symbol rate)</td>
</tr>
<tr>
<td>TP5</td>
<td>Demodulated bit, I-channel DATA_I_OUT(3)</td>
</tr>
<tr>
<td>TP6</td>
<td>Demodulated bit, Q-channel DATA_Q_OUT(3)</td>
</tr>
<tr>
<td>TP7</td>
<td>Bit transitions. ‘1’ if at least symbol transition within any 1023 symbol window.</td>
</tr>
<tr>
<td>TP10</td>
<td>Input samples saturation detector. Helpful in identifying possible saturation at the external A/D converters.</td>
</tr>
</tbody>
</table>

Implementation

Phase Map (QPSK)

The nominal phase map follows Gray encoding as illustrated below:

As with all QPSK demodulators, there is a phase ambiguity of n*90 deg in the demodulated output. The phase ambiguity is not resolved in this module. It is typically resolved either through the use of a unique word periodically inserted in the data stream (for example when using Turbo code or Reed-Solomon block code) or through bit error rate detection in Viterbi decoder.
Differential Decoding (QPSK)

In low data rate applications where the phase noise can affect the bit error rate performances, it can be advisable to use differential QPSK. The phase difference between two successive symbols conveys the information symbol.

- 0 deg = “00”
- 90 deg = “01”
- 180 deg = “10”
- 270 deg = “11”.

This implementation is not strictly that of a DPSK demodulator in the sense that the receiver still tracks the carrier phase and frequency using a Costas loop.

Filter Response

This module is configured at installation with a 20% rolloff filter. The filter rolloff can be selected among 20%, 25% and 40%. Changing the rolloff selection requires re-loading the firmware using the ComBlock control center.

The three firmware versions can be downloaded from www.comblock.com/download.

- COM-1001-A QPSK demodulator 20% rolloff
- COM-1001-B QPSK demodulator 25% rolloff
- COM-1001-E QPSK demodulator 40% rolloff

Filter Response (20% rolloff)

The raised cosine square root filter with 20% rolloff is a 29-tap FIR filter with the following impulse response:

- $\text{Coeff}(0) = -8/1024$
- $\text{Coeff}(1) = -16/1024$
- $\text{Coeff}(2) = -8/1024$
- $\text{Coeff}(3) = 8/1024$
- $\text{Coeff}(4) = 24/1024$
- $\text{Coeff}(5) = 24/1024$
- $\text{Coeff}(6) = 12/1024$
- $\text{Coeff}(7) = -16/1024$
- $\text{Coeff}(8) = -48/1024$
- $\text{Coeff}(9) = -52/1024$
- $\text{Coeff}(10) = -16/1024$
- $\text{Coeff}(11) = 64/1024$
- $\text{Coeff}(12) = 160/1024$
- $\text{Coeff}(13) = 240/1024$
- $\text{Coeff}(14) = 272/1024$
- $\text{Coeff}(j=15:28) = \text{coeff}(28-j)$

Filter Response (25% rolloff)

The raised cosine square root filter with 25% rolloff is a 29-tap FIR filter with the following impulse response:

- $\text{Coeff}(0) = -4/1024$
- $\text{Coeff}(1) = -12/1024$
- $\text{Coeff}(2) = -8/1024$
- $\text{Coeff}(3) = 2/1024$
- $\text{Coeff}(4) = 16/1024$
- $\text{Coeff}(5) = 24/1024$
- $\text{Coeff}(6) = 12/1024$
- $\text{Coeff}(7) = -16/1024$
- $\text{Coeff}(8) = -48/1024$
- $\text{Coeff}(9) = -48/1024$
- $\text{Coeff}(10) = -16/1024$
- $\text{Coeff}(11) = 64/1024$
- $\text{Coeff}(12) = 160/1024$
- $\text{Coeff}(13) = 240/1024$
- $\text{Coeff}(14) = 272/1024$
- $\text{Coeff}(j=15:28) = \text{coeff}(28-j)$

The raised cosine square root filter with 40% rolloff is a 29-tap FIR filter with the following impulse response:
Filter Response (40% rolloff)

The raised cosine square root filter with 40% rolloff is a 29-tap FIR filter with the following impulse response:

\[
\begin{align*}
\text{Coeff}(0) &= 4/1024 \\
\text{Coeff}(1) &= 1/1024 \\
\text{Coeff}(2) &= -4/1024 \\
\text{Coeff}(3) &= -4/1024 \\
\text{Coeff}(4) &= 2/1024 \\
\text{Coeff}(5) &= 12/1024 \\
\text{Coeff}(6) &= 14/1024 \\
\text{Coeff}(7) &= -2/1024 \\
\text{Coeff}(8) &= -30/1024 \\
\text{Coeff}(9) &= -48/1024 \\
\text{Coeff}(10) &= -24/1024 \\
\text{Coeff}(11) &= 48/1024 \\
\text{Coeff}(12) &= 152/1024 \\
\text{Coeff}(13) &= 248/1024 \\
\text{Coeff}(14) &= 284/1024 \\
\text{Coeff}(j=15:28) &= \text{coeff}(28-j);
\end{align*}
\]

Bit Error Rate Performances

The demodulator bit-error-rate performances are within 0.5 dB from the theoretical performances \(1/2 \cdot \text{erfc}(E_b/N_0)\) of QPSK demodulators at \(E_b/N_0\) of 1 dB. Actual measurements taken by using the COM-1001-E digital demodulator, the COM-1002-E digital modulator and the COM-1023 noise generator are shown below:

BER performance

The demodulator threshold is better than -2 dB \(E_b/N_0\) during digital back to back tests.

The demodulated QPSK bits (also captured with back to back digital modulator-demodulator). It shows that the intersymbol interferences are negligible.

Frequency Acquisition & Tracking

The demodulator comprises three frequency acquisition and tracking processes:

- a phase locked loop (PLL), also known as ‘Costas Loop’.
- an Automatic Frequency Control (AFC) loop.
- an extended frequency acquisition circuit.

The AFC is to quickly detect and compensate for carrier frequency offsets, generally around the time of the initial acquisition. The PLL is to detect and compensate for carrier phase errors.
The PLL is a second order loop. It can track the center frequency over a range of +/- 1.5 * symbol rate. The digital implementation of the Costas PLL has a small frequency acquisition range of about ±1% of the modulation symbol rate.

The main purpose of the AFC is to increase the frequency acquisition window to about ±10% of the modulation symbol rate (typical). Once the AFC ‘zooms in’, the AFC must be disabled (see REG7 bit2).

The extended frequency acquisition circuit extends the frequency acquisition range to about ±50% of the modulation symbol rate (typical). The algorithm relies on the spectrum symmetry: it is thus important to ensure bit randomness at the transmitter for a symmetrical spectrum. This loop is significantly slower than the AFC. It can be enabled or disabled by means of control register REG6 bit 4.

If the unknown received carrier frequency uncertainty is larger, the user must program some search algorithm using the nominal center frequency control registers (REG3/4/5).

For high data rates (> 100 Kbps), carrier phase noise is generally negligible. For lower data rates, it is may be necessary to adjust the carrier tracking loop gain as a tradeoff between carrier phase noise (originating at the modulator, up-converter, down-converter, etc) and thermal noise. To this effect, the user is given control of the loop gain over a range of x1, x2, x4 and x8.

The higher loop gain can also be used temporarily during acquisition to increase the frequency acquisition window from approximately 1% to 3% of the symbol rate. However, use of the AFC is preferred because of the faster acquisition time and larger acquisition range.

In some conditions, such as no input signal, the AFC and PLL loops can drift out and inhibit (re-)acquisition. It is possible for the user to reset the accumulators within the AFC and PLL loops by writing a ‘1’ in REG7 bit7.

The Costas loop nominal settings are selected to keep the BER degradations small (within 0.5 dB from theory) at the threshold SNR. The resulting frequency acquisition range is about 1% of the symbol rate. The acquisition time is typically 500 symbols as shown below.

The carrier tracking loop’s response to a (worst case) 45 degrees phase error step at the input is shown below.

![NCO phase response to a 45 deg. input phase error step. Nominal loop gain. Noiseless.](image)

Input Interpolation

This module provides fine selection of symbol rates, as long as the input sampling rate is between x4 and x8 the symbol rate. For higher ratios between input sampling rate / symbol rate, the COM-1008 variable decimation filter is recommended to prevent aliasing.

AGC

The COM-1001 comprises two AGC circuits, one at the front-end operating jointly with a front-end analog receiver, the other fully digital after channel filtering.

Front-End AGC

The purpose of this front-end AGC is to prevent saturation at the external A/D converter(s) while making full use of the 10-bit A/D converter dynamic range. The principle of operations is outlined below:

(a) out-of-range at the A/D converter is detected. An out-of-range condition occurs if the quantized A/D samples are equal to either “1111111111” or “0000000000”.

(b) The AGC will adjust the analog circuitry gain so that out-of-range conditions do not occur more than 1 in 64 samples in the average.
(c) The resulting gain control signal is a pulse-width modulated (PWM) signal with 10-bit precision.

The analog circuit shall filter this 3.3V low-voltage TTL PWM signal with a low-pass filter prior to controlling the analog gain. The PWM is randomized and its spectral distribution shifted to the higher frequencies so as facilitate the analog low-pass filter design.

The AGC loop bandwidth is typically 1 Hz when used in conjunction with COM-30xx receivers and a 40 MHz input clock. The loop response time is assymetrical: it responds faster to a saturation condition than to a ‘low signal’ condition.

The gain control signal will increase if too many out-of-range conditions occur.

Digital AGC
A digital AGC provides 18 dB (3 bits) of dynamic range for signals following the raised cosine filter.

Mechanical Interface

Pinout

Serial Link P1
The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.
This connector is used for multipoint-to-point connection over a shared data bus when control register REG7(3) = '1'. COM-1001 is a bus slave. It always listens to BUS_CLK_IN, BUS_ADDR, BUS_RWN. The bus interface is only via the J3 connector, the J4 connector being disabled.

This connector is used for point-to-point (i.e. direct) connection between two ComBlocks when control register REG7(3) = ‘0’.
I/O Compatibility List
(not an exhaustive list)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM-1002 BPSK/QPSK/OQPSK modulator</td>
<td>COM-1005 Bit Error Rate Measurement</td>
</tr>
<tr>
<td>(digital back to back)</td>
<td></td>
</tr>
<tr>
<td>COM-300x RF receivers</td>
<td>COM-7001 Turbo Code decoder</td>
</tr>
<tr>
<td>COM-1008 Variable decimation</td>
<td>COM-1009 Convolutional decoder K=5, 7</td>
</tr>
<tr>
<td>COM-1023 BER generator, AWGN generator</td>
<td>COM-8003 Signal diversity combiner</td>
</tr>
<tr>
<td>COM-1024 Multi-path generator</td>
<td>COM-5003 TCP-IP / USB Gateway</td>
</tr>
</tbody>
</table>

Configuration Management
This specification is to be used in conjunction with VHDL software revision 28.

ComBlock Ordering Information

COM-1001 Digital BPSK/QPSK/OQPSK demodulator

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com