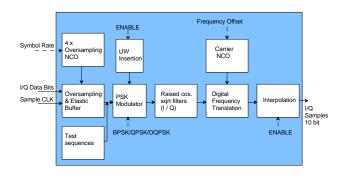
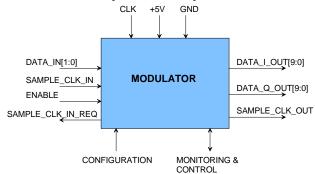


COM-1002 BPSK/QPSK/OQPSK MODULATOR


Block Diagram

Key Features

- BPSK/QPSK/OQPSK modulator.
- Programmable data rates up to 20 Mbps (QPSK) and 10 Mbps (BPSK) by steps of at most 3bps.
- Includes raised cosine square root filter with 20%, 25%, or 40% rolloff options.
- Differential and non-differential encoding.
- Synchronization sequence (unique word) insertion to facilitate demodulator acquisition.
- Internal generation of pseudo-random bit stream and unmodulated carrier for test purposes.
- Built-in channel impairments generation: - frequency offset (Doppler)
- On-board or external clock selection.
- Single 5V supply
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Interfaces with 5V and 3.3V logic.


For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1002.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Electrical Interface

Modulator Inputs / Outputs

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2006 Issued 1/14/2006 Two basic types of input connections are available for user selection:

- direct connection between data source and modulator.
- single data source to multiple modulators over a shared bus.

Innut Madula	Definition
Input Module Interface	Demition
Direct connection	
between two	
ComBlocks,	
REG9(4) = '0' DATA_IN[1:0]	Innut data atmost
DATA_IN[1.0]	Input data stream.
	In 1-bit serial mode, use
	DATA_IN[0] only.
	In 2-bit parallel mode,
	DATA_IN[0] is the I data bit
	DATA_IN[1] is the Q data bit
	The Q data bit is ignored in
	BPSK mode.
SAMPLE_CLK_IN	Input symbol clock. One CLK-
	wide pulse. Read the input
	signals at the rising edge of
	CLK when SAMPLE_CLK_IN
	= '1'.
ENABLE	Modulator enable input.
	Internally pulled high.
	Qualifies the
	SAMPLE_CLK_IN signal.
	Used for burst-mode
	transmission. In continuous
	mode, keep at '1'.
SAMPLE_CLK_IN_REQ	One CLK-wide pulse.
	Requests a sample from the
	module upstream. For flow-
	control purposes.
CLK_IN	Input reference clock for
	synchronous I/O and
	processing. Yields internal
	CLK clock. Typically $f_{clk} = 40$
	MHz.

Input Module	Definition
Interface	
Bus connection,	
REG9(4) = '1'	
BUS_CLK_IN	40 MHz input reference clock
	for use on the synchronous
	bus.
BUS_ADDR[3:0]	Bus address. Input (since this
	module is a bus slave).
	Designates which slave
	module is targeted for this read
	or write transaction.

	All 1's indicates that the write
	data is to be broadcasted to all
	receiving slave modules.
	Read at the rising edge of
	BUS_CLK_IN
BUS_RWN	Read/Write#. Input (since this
	module is a bus slave).
	Indicates whether a read (1) or
	write (0) transaction is
	conducted. Read at the rising
	edge of BUS_CLK_IN. Read
	and Write refer to the bus
	master's perspective.
BUS_DATA[15:0]	Bi-directional data bus.
	Input when BUS_RWN='0'.
	Output when BUS_RWN='1'.
	Read data latency is 2 clock
	periods after the read
	command.
	Functional definition during
	write:
	• bit 0 SAMPLE_CLK_IN.
	'1' when DATA_IN is
	available
	• bit 1 DATA_IN data
	stream to modulator.
	• bits(15:2) undefined
	Functional definition during
	read:
	• bit 0
	SAMPLE_CLK_IN_REQ
	requests data from the
	source. Used for flow
	control.
	• bits(15:1) undefined
L	

Two basic types of output connections are available for user selection:

- connection to dual 10-bit DACs, parallel I and Q samples, output sampling clock.
- connection to dual 14-bit DACs, multiplexed I and Q samples, input sampling clock.

Output Module	Definition
Interface (Output	
data pushed out)	
Parallel 10-bit I & Q	
samples.	
REG9(2) ='0'	
DATA_I_OUT[9:0]	Modulated output signal, real
	axis. 10-bit precision.
	Format: 2's complement or
	unsigned, selected by
	configuration bit 1.
DATA_Q_OUT[9:0]	Modulated output signal,
	imaginary axis. 10-bit

precision. Same format as DATA_I_OUT.SAMPLE_CLK_OUTOutput signal sampling clock. Read the output signal at the rising edge of CLK when SAMPLE_CLK_OUT = '1'. Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods.DAC_CLK_OUTOutput sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge.CLK_OUTOutput reference clock. Same as CLK internal processing clock. Typically 40 MHz.		
SAMPLE_CLK_OUTOutput signal sampling clock. Read the output signal at the rising edge of CLK when SAMPLE_CLK_OUT = '1'. Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods.DAC_CLK_OUTOutput sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge.CLK_OUTOutput reference clock. Same as CLK internal processing		
Read the output signal at the rising edge of CLK when SAMPLE_CLK_OUT = '1'. Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods.DAC_CLK_OUTOutput sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge.CLK_OUTOutput reference clock. Same as CLK internal processing		DATA_I_OUT.
rising edge of CLK when SAMPLE_CLK_OUT = '1'. Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing	SAMPLE_CLK_OUT	Output signal sampling clock.
SAMPLE_CLK_OUT = '1'. Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		1 0
Sampling rate is either 4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		rising edge of CLK when
4 x symbol rate or fclk (interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		SAMPLE_CLK_OUT = '1'.
(interpolation off/on configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		Sampling rate is either
configuration bit 7). SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		4 x symbol rate or fclk
SAMPLE_CLK_OUT can stay high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		(interpolation off/on
high when output samples are transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		configuration bit 7).
transmitted in successive CLK periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		SAMPLE_CLK_OUT can stay
periods. DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		high when output samples are
DAC_CLK_OUT Output sampling clock for Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		transmitted in successive CLK
Digital to Analog Converters. DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		periods.
DAC reads the output sample at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing	DAC_CLK_OUT	Output sampling clock for
at the rising edge. CLK_OUT Output reference clock. Same as CLK internal processing		Digital to Analog Converters.
CLK_OUT Output reference clock. Same as CLK internal processing		DAC reads the output sample
as CLK internal processing		at the rising edge.
	CLK_OUT	Output reference clock. Same
		as CLK internal processing
		clock. Typically 40 MHz.

Output Module	Definition
Interface (Output data	
pulled)	
REG9(2) ='1'	
SAMPLE_CLK_REQ_IN	Input. 100 MHz clock
	requesting output samples.
DATA_OUT[13:0]	Output. Quadrature baseband
	samples, 14-bit precision, 2's
	complement format. Bit 13 is
	the most significant bit.
	The in-phase (I) and
	quadrature (Q) samples
	alternate. Output samples are
	synchronous with the falling
	edge of
	SAMPLE_CLK_REQ_IN.
TX_ENABLE	Output. Transmit enable.
	Active high.
	The first sample after
	TX_ENABLE becomes active
	is an in-phase (I) sample.
Serial Monitoring &	DB9 connector.
Control	115 Kbaud/s. 8-bit, no parity,
	one stop bit. No flow control.
Power Interface	4.75 – 5.25VDC. Terminal
	block. Power consumption is
	approximately proportional to
	the CLK frequency. The
	maximum power consumption
	at 40 MHz is 650mA.

Configuration

Complete ComBlock assemblies can monitored and controlled centrally over a single serial, LAN/TCP-IP, USB 2.0, or PCMCIA/CardBus connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

Most processing is done at the sampling rate / $f_{sample_clk} = 4 *$ symbol rate.

In the definition below, a few control register bits may be undefined to maintain backward compatibility with previous versions. They can be ignored by the user when using the latest firmware release.

Parameters	Configuration
Symbol rate x	24-bit unsigned integer expressed as
4	fsymbol rate x 4 * 2^{24} / f _{clk} .
(f _{sample_clk})	f _{clk} is typically 40 MHz.
	REG0 = bit 7-0 (LSB)
	REG1 = bit 15 - 8
	REG2 = bit 23 – 16 (MSB)
Offset carrier	24-bit signed integer (2's complement
frequency	representation) expressed as
	$fc * 2^{24} / f_{sample_clk}$.
	$f_{sample_{clk}}$ is defined by REG0,1,2.
	REG3 = bit 7 - 0
	$\mathbf{REG4} = \mathbf{bit} \ 15 - 8$
	REG5 = bit 23 - 16
Signal gain	Signal level.
	8-bit unsigned integer.
	Maximum level 255, Minimum level 0.
	When the maximal level (255) is
	selected, the peak-to-peak dynamic
	range is +/- 371 out of a +/-512 (10-bit)
	range and the standard deviation is 249.
	REG6 = bit 7-0
Reserved	0x00
	REG7
Internal /	Clock is 'internal' when this module is
External clock selection	the first in the transmission chain and
selection	when using the internally generated test
	sequences (see Test mode below). In all
	other cases, clock selection is 'external'.
	0 = internal clock
	1 = external clock
	REG8 bit 0
Output sample	0 = 2's complement
format	1 = unsigned
	See also REG9 bit 2 for additional
	settings.
	REG8 bit 1

Modulation	00 = BPSK
Wouldton	01 = QPSK
	10 = OQPSK (Q channel is delayed by
	¹ / ₂ a symbol w.r.t. the I channel)
	REG8 bit 3 – 2
Test mode	00 = disabled
	01 = internal generation of 2047-bit
	periodic pseudo-random bit sequence as
	modulator input. (overrides external
	input bit stream).
	10 = unmodulated carrier. (overrides
	external input bit stream)
-	REG8 bit 5 – 4
Spectrum inversion	Invert Q bit.
inversion	0 = off
	1 = on
Testa en alla tila e	REG8 bit 6
Interpolation	Interpolation to maximum clock rate. 0 = off
	0 = 011 1 = 0n
	r = on REG8 bit 7
Differential	0 = off
encoding	1 = 0n
6	REG9 bit 0
Input format	0 = 1-bit serial
input format	1 = 2-bit parallel
	REG9 bit 1
Output data	0 = output data is pushed to the next
flow	module (for example to COM-2001, or
	COM-1001)
	1 = output data is pulled by next module
	(for example by the COM-4004)
	REG9 bit 2
Tx unique	0 = off
word	1 = on
	REG9 bit 3
Input bus	Controls whether the input connection is
enabled	point-to-point or point-to-multipoint
	over a data bus (via a COM-9004
	demultiplexing connector for example).
	The J2 input connector pinout is affected
	by this control bit. $0 = direct connection.$ Point to point
	0 = direct connection. Point to point. 1 = input data bus enabled.
	REG9 bit 4
Bus address	Unique 4-bit address identifying this
245 4441055	module on the input bus (if the input bus
	is enabled in REG9 bit 4). Ignore
	otherwise. This module acts as bus
	slave: it performs the read/write
	slave: it performs the read/write transaction requested by the bus master
	transaction requested by the bus master
	transaction requested by the bus master if and only if the bus address matches its
	transaction requested by the bus master if and only if the bus address matches its own address defined here. This address
	transaction requested by the bus master if and only if the bus address matches its own address defined here. This address must be unique among modules

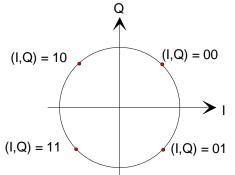
Writing to REG9 resets the output interface. When interfacing with the COM-4004 70 MHz modulator, any configuration change in the COM-4004 should be followed by an interface reset.

Configuration example 1:

REG0 = 0x99REG1 = 0x99REG2 = 0x19REG3 = 0xD7REG4 = 0xA3REG5 = 0x00REG6 = 0xFFREG7 = 0x00REG8 = 0xA2REG9 = 0x00configures the modulator as follows: symbol rate x 4 = 4 MHz offset carrier = 10 KHzsignal gain = 255 (maximum) internal clock unsigned output format BPSK no spectrum inversion interpolation on output data is pushed to the next module

With this configuration, the modulator will synthesize an unmodulated 10 KHz sinewave on the I-channel port, in unsigned format for direct connection to the A/D converter module.

Configuration example 2:


REG0 = 0xFFREG1 = 0xFFREG2 = 0xFFREG3 = 0xFFREG4 = 0xFFREG5 = 0xFFREG6 = 0xFFREG7 = 0xFFREG8 = 0x94REG9 = 0x00configures the modulator as follows: symbol rate x 4 = 39999997.6 Hz offset carrier = -2.38 Hz signal gain = 255 (maximum) internal clock 2's complement output format OPSK test pattern 2047-bit pseudo-random sequence no spectrum inversion

interpolation on Not differentially encoded.

Operation

Phase mapping

The nominal phase map follows Gray encoding as illustrated below:

REG8(6) causes a spectrum inversion by changing the Q sign.

Configuration Files

In order to provide for configuration flexibility without unduly increasing the hardware complexity, some features require uploading different firmware into the ComBlock using the ComBlock control center.

• Channel filter (raised cosine square root) rolloff: 20%, 25% and 40%.

All firmware versions can be downloaded from <u>www.comblock.com/download</u>.

COM-1002-A BPSK/QPSK/OQKSK modulator 20% rolloff.

COM-1002-B BPSK/QPSK/OQKSK modulator 25% rolloff.

COM-1002-E BPSK/QPSK/OQKSK modulator 40%.

Differential Encoding

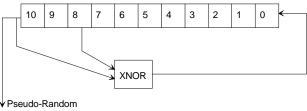
In low data rate applications where phase noise may become a problem, link performances can be improved by using differential encoding. At the encoder, the symbol information transforms into a phase shift, not an absolute phase. For QPSK, the phase shift is as follows: The symbol 00 is mapped into +0 deg

The symbol 01 is mapped into +0 deg

The symbol 10 is mapped into +180 degThe symbol 11 is mapped into +270 deg

For BPSK, the phase shift is as follows: The bit 0 is mapped into +0 deg The bit 1 is mapped into +180 deg

Unique Word


A unique word can be inserted periodically every 2048 data symbols to facilitate fast acquisition at the demodulator. This feature should only be enabled when used in conjunction with a compatible demodulator (i.e. designed to recognize this specific unique word and frame length).

The unique word is 32-bit long: 01011010 00001111 10111110 01100110 (binary) 0x 5A 0F BE 66 (hex) The most significant bit (left-most) is transmitted first.

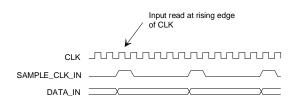
The unique word is always modulated as differentially encoded BPSK, irrespective of the modulation selected for the following 2048 symbols.

Pseudo-Random Bit Stream

A periodic pseudo-random sequence can be used as modulator source instead of the input data stream. A typical use would be for end-to-end bit-error-rate measurement of a communication link. The sequence is 2047-bit long maximum length sequence generated by an 11-tap linear feedback shift register:

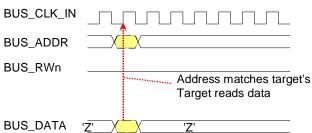
Sequence

Timing

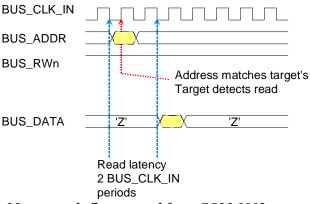

The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals

transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

The maximum modulation symbol rate is equal to the reference clock frequency CLK/4.

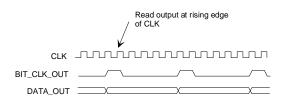

Input

Point to Point connection (REG9 bit4 = 0)



Input

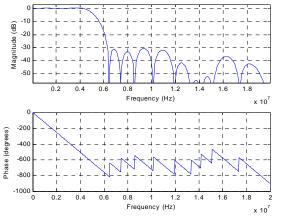
Point to Multi-points connection (REG9 bit4 = 1). COM-1002 is a bus slave. It always listens to BUS_CLK_IN, BUS_ADDR, BUS_RWN.



Master writes data streams to COM-1002 target(s)

Master reads flow control from COM-1002 target

Output

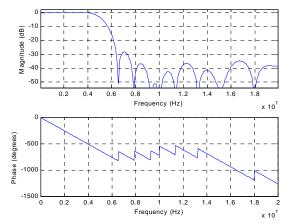

Test Points

Test points are provided for easy access by an oscilloscope probe.

Test	Definition
Point	
TP1	Symbol rate x 4
TP2	Input data, DATA_IN(0)
TP3	Input data, DATA_IN(1)
TP4	Output I channel MSB, DATA_I_OUT(9)
TP5	Unique word flag, '1' during 32-bit unique
	word insertion.
TP6	Modulator input data stream, I-channel
TP7	Modulator input data stream, Q-channel
TP8	Modulator input symbol clock
TP9	PRBS-11 test sequence
TP10	PRBS-11 periodic start of test sequence

Performance

Filter Response (20% rolloff)

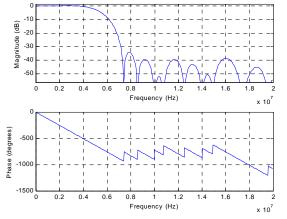


(filter response normalized for 4*symbol rate = 40 MHz)

The raised cosine square root filter with 20% rolloff is a 29-tap FIR filter with the following impulse response:

Coeff(0) = -8/1024Coeff(1) = -16/1024Coeff(2) = -8/1024Coeff(3) = 8/1024 Coeff(4) = 24/1024Coeff(5) = 24/1024Coeff(6) = 12/1024Coeff(7) = -16/1024Coeff(8) = -48/1024Coeff(9) = -52/1024Coeff(10) = -16/1024Coeff(11) = 64/1024Coeff(12) = 160/1024Coeff(13) = 240/1024Coeff(14) = 272/1024Coeff(14) = 272/1024Coeff(28-j);

Filter Response (25% rolloff)

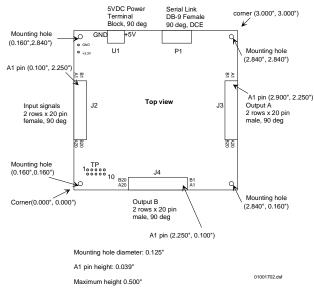


(filter response normalized for 4*symbol rate = 40 MHz)

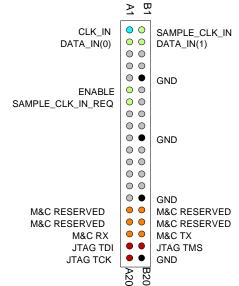
The raised cosine square root filter with 25% rolloff is a 29-tap FIR filter with the following impulse response:

Coeff(0) = -4/1024Coeff(1) = -12/1024Coeff(2) = -8/1024Coeff(3) = 2/1024Coeff(4) = 16/1024Coeff(5) = 24/1024Coeff(6) = 12/1024Coeff(7) = -16/1024Coeff(8) = -48/1024Coeff(9) = -48/1024Coeff(10) = -16/1024Coeff(11) = 64/1024Coeff(12) = 160/1024Coeff(13) = 240/1024Coeff(14) = 272/1024Coeff(j=15:28) = coeff(28-j);

Filter Response (40% rolloff)



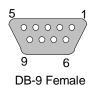
(filter response normalized for 4*symbol rate = 40 MHz)


The raised cosine square root filter with 40% rolloff is a 29-tap FIR filter with the following impulse response:

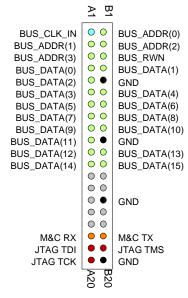
Coeff(0) = 4/1024Coeff(1) = 1/1024Coeff(2) = -4/1024Coeff(3) = -4/1024Coeff(4) = 2/1024Coeff(5) = 12/1024Coeff(6) = 14/1024Coeff(7) = -2/1024Coeff(8) = -30/1024Coeff(9) = -48/1024Coeff(10) = -24/1024Coeff(11) = 48/1024Coeff(12) = 152/1024Coeff(13) = 248/1024Coeff(14) = 284/1024Coeff(j=15:28) = coeff(28-j);

Mechanical Interface

Input Connector J2

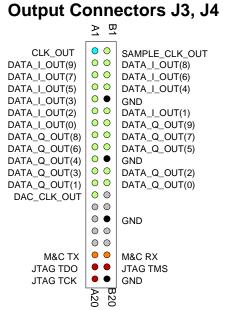


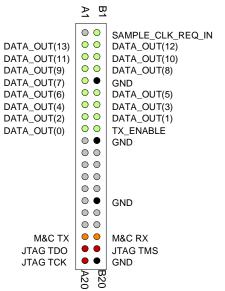
direct connection between two ComBlocks when control register REG9(4) = '0'.


Pinout

Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.





This connector is used for point-to-multipoint (bus) connection when control register REG9(4) = '1'. COM-1002 is a bus slave. It always listens to BUS_CLK_IN, BUS_ADDR, BUS_RWN.

This connector is used for point-to-point input, i.e.

This connector is used when output data is pushed out (configuration REG9 bit2 = 0).

This connector is used when output data is pulled out by the next module (configuration REG9 bit 2 = 1).

I/O Compatibility List

(not an exhaustive list)

Input	Output
<u>COM-1010</u>	<u>COM-1001</u>
Convolutional	BPSK/QPSK/OQPSK
encoder	Demodulator (back to back)
COM-7001 Turbo	COM-2001 digital-to-analog
Code Error	converter (baseband).
Correction	
COM-8001 Pattern	<u>COM-4004</u> 70 MHz IF
generator 256MB	modulator
COM-8004 Signal	COM-1023 BER generator,
diversity splitter	Additive White Gaussian Noise
	Generator
<u>COM-5003</u> TCP-IP	COM-1024 Multipath simulator.
/ USB Gateway	

Configuration Management

This specification is to be used in conjunction with VHDL software revision 32.

ComBlock Ordering Information

COM-1002 BPSK/QPSK/OQKSK modulator

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com