Com Block

COM-1005 BIT ERROR RATE MEASUREMENT VHDL SOURCE CODE OVERVIEW

Overview

The COM-1005 ComBlock Module comprises two pieces of software:

- VHDL code to run within the FPGA for all signal processing functions.
- C/Assembly code running within the Atmel AT90S8515 or ATMega8515L microprocessor for non application-specific monitoring and control functions.

The VHDL code interfaces to the monitoring and control functions by exchanging byte-wide registers on the Atmel microcontroller 8-bit data bus. The control and monitoring registers are defined in the specifications [1].

The Atmel microprocessor code is generic (i.e. non application specific), not user-programmable and functionally transparent to the user. It is thus not described here.

The COM-1005 VHDL code runs on the generic COM-1000 hardware platform. The schematics [2] for this platform are available in this CD.

Reference documents

[1] specifications: com1005.pdf

[2] hardware schematics: com_1000schematics.pdf

[3] VHDL source code in directory com-1005_013\src

[4] Xilinx ISE project files com-1005_013\com-1005.npl

[5] .ucf constraint files com-1005_013\src\com1005.ucf

[6] .mcs FPGA bit files com-1005_013\ com1005_013.mcs

Configuration Management

The current software revision is 13.

Configuration Options

No option.

VHDL development environment

The VHDL software was developed using two development environments:

- (a) Xilinx ISE 4.1 with Synopsys FPGA Express 3.6 as synthesis tool.
- (b) Xilinx ISE 6.3 with XST as synthesis tool.

Target FPGA

The VHDL code was synthesized for the Xilinx Spartan-II XC2S200-5PQ208 FPGA.

Xilinx-specific code

The VHDL source code was written in generic VHDL with few Xilinx primitives. No Xilinx CORE is used. The Xilinx primitives are:

- BUFG
- IBUFG
- OBUF
- RAMB4_S1_S1

VHDL software hierarchy

The code is stored with one, and only one, entity per file as shown above.

The root program (highlighted) is com1005.vhd.

Clock / Timing

The software uses a single 40 MHz clock, CLK_IN2, as provided externally through pin A1 of the J2 input connector. CLK_IN2 served a triple purpose: (a) internal processing clock, (b) synchronous input clock and (c) synchronous output clock. The code is written to meet the timing requirements on the target FPGA at a speed of at least 40 MHz.

Principle of operation

The COM-1005 expects a 2047-bit periodic pseudorandom data sequence. It first attempts to detect the 2047-bit periodic nature of the input data stream and synchronizes with it. Once synchronized, the COM-1005 compares the input data stream with the synchronized internal replica. Bit errors are counted in windows 1000-bit to 1Gbit long, as selected by the user.

The COM-1005 is also capable of synchronizing with data streams subject to phase ambiguities in a preceding QPSK demodulator. QPSK phase ambiguities cause a remapping of the data stream two bits at a time. The four phase ambiguity combinations are detected during synchronization using four correlators (*matched_filter48b.vhd*). The actual phase map is listed within the COM-1001 specifications

www.comblock.com/download/com1001.pdf

The replica is generated by the component *lfsr11.vhd*.

FPGA Occupancy

Design Summary:						
Number of errors:	0					
Number of warning	ys: 4					
Number of Slices:		841	out	of	2,352	35%
Number of Slices	containing					
unrelated logi	LC:	0	out	of	841	08
Number of Slice H	Flip Flops:	683	out	of	4,704	14%
Total Number 4 ir	nput LUTs:	1,203	out	of	4,704	25%
Number used as LUTs:				1,046		
Number used as a route-thru:				157		
Number of bonded	IOBs:	39	out	of	140	27%
IOB Flip Flops:					17	
Number of Block F	RAMs:	3	out	of	14	21%
Number of GCLKs:		4	out	of	4	100%
Number of GCLKIOE	3s:	1	out	of	4	25%
Total equivalent gate count for design: 63,083						
Additional JTAG gate	e count for	IOBs: 1	,920			

Contact Information

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: info@comblock.com