

COM-1009 VITERBI ERROR CORRECTION DECODER K=7, K=5

Key Features

- Viterbi decoder for error correction.
- Selectable rate and constraint length:
 K = 5, rate 1/7
 K = 7, rates ½, ¾, 7/8
- Support for the following standards: Intelsat IESS-308/309
 DVB ETS 300 421
 DVB ETS 300 744
- Differential decoder to resolve bit stream inversion.
- Maximum throughput (at input): 8Mbps.
- 4-bit soft-quantized demodulated bits.
- Single 5V supply
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right). Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: www.comblock.com/download/com1009.pdf. These specifications are subject to change without notice.

For an up-to-date list of ComBlock modules, please refer to $\underline{www.comblock.com/product_list.htm}$.

Electrical Interface

Input Module Definition		
Interface	2 cmmoron	
DATA_IN[3:0]	4-bit soft-quantized demodulated bits. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'.	
SAMPLE_CLK_IN	Input signal sampling clock. One CLK-wide pulse. Read the input signal at the rising edge of CLK when SAMPLE_CLK_IN = '1'.	
SOF_IN	Optional start of frame reset input. Used only in block mode. Ignored in continuous mode. 1 CLK-wide pulse. Aligned with SAMPLE_CLK_IN.	
CLK_IN	Input reference clock for I/O and internal processing. Maximum speed is 40 MHz.	
Output Module Interface	Definition	
DATA_OUT	Output data stream. 1-bit serial	
SAMPLE_CLK_OUT	Output symbol clock. One CLK-wide pulse. Read the output signals at the rising edge of CLK when SAMPLE_CLK_OUT = '1'.	
Serial Monitoring & Control	DB9 connector. 115 Kbaud/s. 8-bit, no parity, one stop bit. No flow control.	

Power Interface	4.75 – 5.25VDC. Terminal
	block. Power consumption is
	approximately proportional
	CLK_IN . The maximum power
	consumption at 40 MHz is
	500mA.

Important: I/O signals are 0-3.3V LVTTL. **Inputs are NOT 5V tolerant!**

Configuration (via Serial Link / LAN)

Complete assemblies can monitored and controlled centrally over a single serial or LAN connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

Parameters	Configuration	
Constraint length	COM-1009A firmware installed	
K and rate R	0001 = (K = 7, R=1/2)	
	0011 = (K = 7, R = 3/4)	
	0101 = (K = 7, R = 7/8)	
	COM-1009B firmware installed	
	0000 = (K=5, R=1/7)	
	REG0 bits 4-1	
Differential	0 = disabled	
Decoding	1 = enabled	
	REG0 bit 5	
Continuous /	Determines whether the start of frame	
Block mode	SOF_IN signal should be enabled for	
	resetting the decoder at the start of a	
	block.	
	0 = continuous	
	1 = block mode.	
	REG0 bit 6	
Input format	0 = hard decision (uses input signal	
	DATA_IN(3) only).	
	1 = 4-bit soft quantized input.	
	REG0 bit 7	
Measurement	Number of bits in the window where	
window	raw bit errors (bit errors on the	
	encoded bit stream) are computed:	
	000 = 1,000	
	011 = 1,000,000	
	REG1 bits 2 -0	

Baseline configurations can be found at www.comblock.com/tsbasic_settings.htm and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Monitoring (via Serial Link / LAN)

Status registers are read-only. Start to read at address 0 to latch in the multi-byte status words.

Parameters	Monitoring
Synchronized	Synchronized
	SREG0 bit 0
BER	Encoded stream bit errors detected over
	the specified BER measurement
	window.
	SREG1 = bits 7 - 0 (LSB)
	SREG2 = bits 15 - 8
	SREG3 = bits 23 - 16

Digital Test Points

Test points are provided on the J1 header center row 2.

10 11 21		
Test	Definition	
Point		
TP1	Solid '1' when the decoder is synchronized.	
(FPGA-	Toggling otherwise.	
side)		
TP2	Detected bit error in the encoded bit stream	
TP3	Re-synchronization attempt. Each time the	
	Viterbi decoder attempts to re-synchronize, it	
	generates this pulse.	
TP4	Actual received encoded bit stream. Compare	
	with TP5.	
TP5	Reconstructed encoded bit stream (by re-	
	encoding the nearly error-free decoded bit	
	stream). Compare with TP4.	
DONE	'1' indicates proper FPGA configuration.	

Implementation

K = 5

The generator polynomials for K = 5 R = 1/7 is

$$G_0(x) = 1 + x + x^2 + x^4$$

$$G_1(x) = 1 + x^2 + x^3 + x^4$$

$$G_2(x) = 1 + x^2 + x^4$$

$$G_2(x) = 1 + x + x$$

 $G_3(x) = 1 + x^2 + x^3 + x^4$

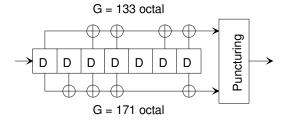
$$G_3(x) = 1 + x^2 + x^3 + x^4$$

$$G_4(x) = 1 + x + x^3 + x^4$$

$$G_5(x) = 1 + x + x^2 + x^4$$

 $G_6(x) = 1 + x + x^2 + x^3 + x^4$

$$G_6(x) = 1 + x + x^2 + x^3 + x^3 + x^4 + x^4 + x^5 +$$

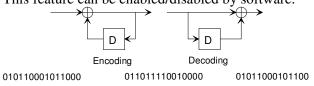

K = 7

The generator polynomials for $K = 7 R = \frac{1}{2}$ are

$$G_0(x) = 1 + x^2 + x^3 + x^5 + x^6$$

$$G_1(x) = 1 + x + x^2 + x^3 + x^6$$

133(octal) and 171(octal). The implementation is depicted below:



Rates other than ½ are implemented by puncturing the rate ½ encoded data stream. The puncturing pattern is as follows (1 denotes transmission, 0 blocking)

Rate ¾	G_0	110
	G_1	101
Rate 7/8	G_0	1111010
	G_1	1000101

Differential Decoding

Differential decoding can be used following FEC decoding as specified in Intelsat IESS-308/309. This feature can be enabled/disabled by software.

This mode compensates for any bit inversion occurring in the transmission channel (for example at a BPSK demodulator which cannot resolve the inherent 180deg phase ambiguity). For example, this mode should be enabled at the COM-1010 FEC encoder and COM-1009 FEC decoder when used in conjunction with the COM-1001 BPSK demodulator.

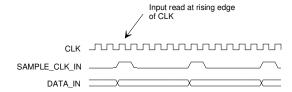
Self Synchronization

When the decoder detects that the bit error is greater than 25%, it attempts to re-synchronize. The resynchronization trigger event is counting 128 bit errors over a period of no more than 512 bits.

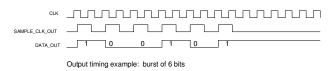
Bit Error Rate Measurement

The decoder estimates the bit error rate on the encoded bit stream by comparing the actual received bit stream with an estimate of the transmitted bit stream. This estimate is generated by re-encoding the nearly error-free decoded bit stream.

The algorithm is based on the proposition that the decoded bit stream is nearly error-free. If the decoded bit stream were error-free, then the reencoded bit stream would be the actual transmitted encoded bit stream before bit errors occur in the transmission channel.

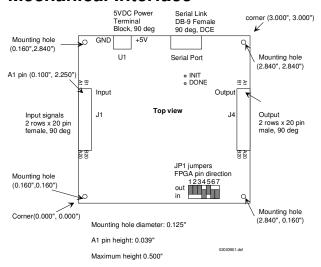

The bit error rate is computed over a window of N bits, where N is user-selectable though control register REG1.

Timing


This module operates at an internal clock rate $\mathbf{f}_{clk} = 2*CLK_IN$ of 80 MHz. However, the maximum I/O clock (CLK_IN) is 40 MHz.

The I/O signals are synchronous with the rising edge of CLK_IN (i.e. all signals transitions always occur after the rising edge of the reference clock CLK_IN).

Input

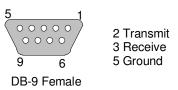


Output

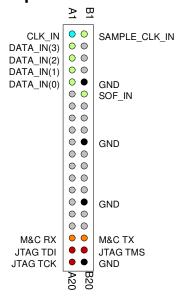
The diagram above illustrates the bursty nature of the demodulated output. Typically, output bits are grouped in burst of 6 bits.

Mechanical Interface

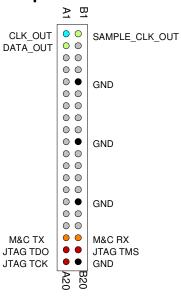
Note: JP1 jumpers can be in any location "IN", 'OUT' or not installed.


Schematics

The board schematics are available on-line at http://www.comblock.com/download/com_8001schematics.pdf


Pinout

Serial Link


The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.

Input Connector J1

Output Connector J4

I/O Compatibility List

(not an exhaustive list)

Input	Output
COM-1001 BPSK/QPSK/OQPSK	<u>COM-1005</u> BER
demodulator	measurement
<u>COM-1011/1018</u> DSSS	COM-5003 TCP-
demodulator	IP / USB Gateway
<u>COM-1027</u>	COM-8002 Data
FSK/MSK/GFSK/GMSK	acquisition
demodulator	256MB.
COM-1023 BER generator,	
Additive White Gaussian Noise	
Generator	
COM-1010 Convolutional encoder	
(back to back)	

Configuration Management

This specification is to be used in conjunction with VHDL software revision 8.

ComBlock Ordering Information

COM-1009-A Viterbi error correction decoder, K=7

COM-1009-B Viterbi error correction decoder, K=5

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A.

Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com