

Key Features

- Convolutional encoder for error correction.
- Selectable rate and constraint length: K = 5. rate 1/7 K = 7, rates $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$ K = 9, rates 1/3, $\frac{1}{2}$, 2/3
- Treillis Coding Modulation (TCM) • encoder: Rate 2/3 (8-PSK) Rate 3/4 (16-PSK)
- Continuous or Block mode operation.
- Support for the following standards: • Intelsat IESS-308/309 Intelsat IESS-310 DVB ETS 300 421 DVB ETS 300 744 CCSDS 101.0-B-6
- Differential encoder.
- Maximum throughput (at output): 40 Mbps. •
- On-board or external clock selection. •
- ComScope –enabled: key internal • signals can be captured in real-time and displayed on host computer.
- Single 5V supply. Connectorized 3"x 3" • module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Interfaces with 5V and 3.3V logic.

For the latest data sheet, please refer to the **ComBlock** web site: www.comblock.com/download/com1010.pdf. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to www.comblock.com/product list.htm.

CONVOLUTIONAL ENCODER

Electrical Interface

Input Modulo	Definition	
Input Module Interface	Demitton	
	T	
DATA_IN	Input data stream	
SAMPLE_CLK_IN	Input signal sampling clock.	
	One CLK-wide pulse. Read	
	the input signal at the rising	
	edge of CLK when	
	$SAMPLE_CLK_IN = '1'.$	
SAMPLE_CLK_IN_REQ	One CLK-wide pulse output.	
	Requests a sample from the	
	module upstream. For flow-	
	control purposes.	
SOF_RESET	Optional start of frame reset	
	input. Used only in block	
	mode. Ignored in continuous	
	mode. 1 CLK-wide pulse.	
	Aligned with	
	SAMPLE_CLK_IN.	
CLK_IN	Input reference clock for	
	synchronous I/O and	
	processing. Yields internal	
	CLK clock. Maximum	
	frequency \mathbf{f}_{clk} is 40 MHz.	
Output Module	Definition	
Interface		
DATA_OUT[3:0]	Output data stream.	
	Can be one-bit serial, $2/3/4$ bit	
	parallel depending on the	
	format selection.	
	2-bit parallel typically used for	
	I/Q QPSK modulation.	
	3-bit parallel typically used for	
	8-PSK modulation.	
	4-bit parallel typically used for	
	16-PSK modulation.	

SAMPLE_CLK_OUT	Output symbol clock. One
	CLK-wide pulse. Read the
	output signals at the rising
	edge of CLK when
	SAMPLE_CLK_OUT = $'1'$.
SAMPLE_CLK_OUT_REQ	One CLK-wide pulse input.
	Requests for a sample from
	the module downstream.
	For flow-control purposes.
Serial Monitoring &	DB9 connector.
Control	115 Kbaud/s. 8-bit, no
	parity, one stop bit. No flow
	control.
Power Interface	4.75 – 5.25VDC. Terminal
	block. Power consumption
	is approximately
	proportional to the CLK
	frequency. The maximum
	power consumption at 40
	MHz is 300mA.

Configuration (via Serial Link / LAN)

Complete assemblies can monitored and controlled centrally over a single serial or LAN connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

Parameters	Configuration
Constraint	0000 = (K=5, R=1/7)
length K and	0001 = (K = 7, R = 1/2, Intelsat)
rate R	0010 = (K = 7, R = 2/3, Intelsat)
	0011 = (K = 7, R = 3/4, Intelsat)
	0100 = (K = 7, R = 5/6, Intelsat)
	0101 = (K = 7, R = 7/8, Intelsat)
	0110 = (K = 9, R = 1/3)
	0111 = (K = 9, R = 1/2)
	1000 = (K = 9, R = 2/3)
	1001 = (TCM, K=7, R=2/3)
	1010 = (TCM, K=7, R=3/4)
	1011 = (K = 7, R = 1/2, CCSDS)
	1100 = (K = 7, R = 2/3, CCSDS)
	1101 = (K = 7, R = 3/4, CCSDS)
	1110 = (K = 7, R = 5/6, CCSDS)
	1111 = (K = 7, R = 7/8, CCSDS)
	REG0 bits 4-1
Differential	0 = disabled
Encoding	1 = enabled
	REG0 bit 5
Continuous /	Determines whether the SOF_RESET
Block mode	mode should be enabled for resetting
	the encoder at the start of a block.
	0 = continuous

	1 = block mode. REG0 bit 6
Output sample format	00 = 1 bit serial
Tormat	01 = 2 bit parallel (I/Q) for connection to QPSK modulator.
	10 = 3-bit parallel for connection to 8-
	PSK modulator. 11 = 4-bit parallel for connection to 16-
	PSK modulator
	This field is ignored when TCM mode is selected.
	REG1 bits 1-0
Internal pattern generation (test	00 = test mode disabled
mode)	01 = counting sequence:
	When set, the baseband input is disabled and a periodic pattern is internally
	generated at the encoder input. The
	pattern consists of an 8-bit counter,
	MSB transmitted first.
	10 = PRBS-11. internal generation of
	2047-bit periodic pseudo-random bit sequence as modulator input. (overrides
	external input bit stream).
	Useful in measuring BER performances
	in conjunction with COM-1005.
	The test pattern bit rate is automatically
	set by the external sink module (typically a modulator) as part of the
	flow control mechanism.
	REG1 bits 3-2
Output symbol rate internal /	In most cases, the COM-1010
external	throughput is determined by modules downstream (for example a modulator).
selection	There are, however, cases when the
	throughput is set using an internal NCO (for example when testing convolutional
	encoder and Viterbi decoder back to
	back).
	0 = exter nal. Output symbol rate is
	based on SAMPLE_CLK_OUT_REQ
	samples requests from following module.
	1 = internal. Output symbol rate is
	selected internally by the NCO frequency set in REG2/3/4. Sample
	requests SAMPLE_CLK_OUT_REQ
	are ignored.
	REG1 bit 4
Output symbol rate NCO	Internal generation of the output symbol
	rate. Ignore this field when the output symbol rate is determined by modules
	downstream.
	24-bit signed integer (2's complement

representation) expressed as fsymbol rate * 2^{24} / \mathbf{f}_{clk} . The internal processing clock \mathbf{f}_{clk} is typically 40 MHz. REG2 = bits 7-0 (LSB) REG3 = bits 15 - 8
REG4 = bits 23 - 16 (MSB)

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Monitoring (via Serial Link / LAN)

Monitoring registers are read-only.

Parameters	Monitoring
Option o /	Returns '1010ov' when prompted for
Version v	option o and version v numbers.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1010 signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal sampling rate	Buffer length (samples)
1: Input bit stream or test pattern	Binary	1 sample /bit	4096
2:Output symbol request (internally set by NCO or externally by SAMPLE_CLK_ OUT_REQ)	Binary	processing clock f _{clk}	4096
Trace 2 signals	Format	Nominal sampling rate	Capture length (samples)
1: Input bit clock	Binary	processing clock f _{clk}	4096
2: Output bit stream DATA_OUT(0)	Binary	1 sample/bit	4096
Trace 3 signals	Format	Nominal sampling rate	Capture length (samples)
1:	Binary	processing	4096

SAMPLE_CLK_		clock f _{clk}	
IN_REQ			
2:	Binary	processing	4096
SAMPLE_CLK_OUT		clock f _{elk}	
Trigger Signal	Format		
1: Start of	binary		
internal PRBS11			
test sequence			
2: SOF RESET	binary		

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the \mathbf{f}_{clk} processing clock as real-time sampling clock.

In particular, selecting the f_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

Test Points

Test points are provided for easy access by an oscilloscope probe.

Test	Definition	
Point		
TP1	Input serial stream bit clock	
TP2	Input serial stream data	
TP3	Output serial stream bit clock	
TP4	Output serial stream data	
TP5	Start of the periodic LFSR-11 2047-bit test	
	pattern.	

Implementation

K = 5

The generator polynomials for K = 5 R = 1/7 is $G_0(x) = 1 + x + x^2 + x^4$ $G_1(x) = 1 + x^2 + x^3 + x^4$ $G_2(x) = 1 + x^2 + x^4$ $G_3(x) = 1 + x^2 + x^3 + x^4$ $G_4(x) = 1 + x + x^2 + x^4$ $G_5(x) = 1 + x + x^2 + x^3 + x^4$

K = 7 (Intelsat)

The generator polynomials for K=7 $R=1\!\!\!/ 2$ are $G_0(x)=1+x^2+x^3+x^5+x^6$ $G_1(x)=1+x+x^2+x^3+x^6$

133(octal) and 171(octal). The implementation is depicted below:

Rates other than $\frac{1}{2}$ are implemented by puncturing the rate $\frac{1}{2}$ encoded data stream. The puncturing pattern is as follows (1 denotes transmission, 0 blocking)

ereting)			
Rate 2/3	G_0	11	
	G_1	10	
Rate ³ ⁄ ₄	G_0	110	
	G_1	101	
Rate 5/6	G_0	11010	
	G_1	10101	
Rate 7/8	G_0	1111010	
	G_1	1000101	

K = 7 (CCSDS)

The generator polynomials for $K = 7 R = \frac{1}{2}$ are $G_0(x) = 1 + x + x^2 + x^3 + x^6$ $G_1(x) = 1 + x^2 + x^3 + x^5 + x^6$

171(octal) and 133(octal). The implementation is depicted below:

G0 = 171 octal $\rightarrow D D D D D D$ G1 = 133 octal

Basic CCSDS convolutional encoder

The basic encoder inverts the G_1 output. When using puncturing, this inverter is removed.

CCSDS convolutional encoder with puncturing

Rates other than $\frac{1}{2}$ are implemented by puncturing the rate $\frac{1}{2}$ encoded data stream. The puncturing pattern is as follows (1 denotes transmission, 0 blocking)

oloeming)		
Rate 2/3	G_0	10
	G_1	11
Rate ³ ⁄ ₄	G_0	101
	G_1	110
Rate 5/6	G_0	10101
	G_1	11010
Rate 7/8	G_0	1000101
	G_1	1111010

K = 9 R = 1/3

The generator polynomials for K = 9 R = 1/3 are $G_0(x) = 1 + x^2 + x^3 + x^5 + x^6 + x^7 + x^8$. $G_1(x) = 1 + x + x^3 + x^4 + x^7 + x^8$. $G_2(x) = 1 + x + x^2 + x^5 + x^8$.

$K = 9 R = \frac{1}{2}, \frac{2}{3}$

The generator polynomials for K = 9 R = 1/2 are $G_0(x) = 1 + x + x^2 + x^3 + x^5 + x^7 + x^8$. $G_1(x) = 1 + x^2 + x^3 + x^4 + x^8$.

The rate 2/3 is implemented by puncturing the rate $\frac{1}{2}$ encoded data stream. The puncturing pattern is as follows (1 denotes transmission, 0 blocking):

Rate 2/3	G_0	11
	G_1	01

Differential Encoding

Differential encoding can be used prior to FEC encoding as specified in Intelsat IESS-308/309. This feature can be enabled/disabled by software.

Treillis Coded Modulation (TCM) Encoder

As per Intelsat IESS-310 for rate 2/3 8-PSK.

TCM encoder, rate 2/3 for 8-PSK

Flow Control

In most applications, the data samples are 'pulled' from the end module which is the timing reference.

This is the case, for example when the reference real-time clock is the modulation rate. By 'pulled', we mean that the data processing is going downstream, whereby the clock requests are going in the opposite direction.

In order to cater to this requirement, the COM-1010 module includes a built-in numerically controlled oscillator which generates the SAMPLE_CLK_IN_REQ output based on the SAMPLE_CLK_OUT_REQ input. For example, if a rate ³/₄ puncturing is selected together with a 1-bit serial output, the NCO will generate 3 SAMPLE_CLK_IN_REQ output pulses for every 4 SAMPLE_CLK_OUT_REQ input pulses.

Timing

The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

Input

Output

Output samples can be bursty, depending on the FEC rate selected. The diagram above illustrates the output sampling clock for rate $R = \frac{1}{2}$, serial output mode The next ComBlock module recognizes that multiple output bits are sent in each burst as it reads the output at the rising edge of CLK when SAMPLE_CLK_OUT = '1'.

Mechanical Interface

Pinout

Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.

DB-9 Female

I/O Compatibility List

(not an exhaustive list)	
Input	Output
<u>COM-5003</u>	COM-1002 BPSK/QPSK/OQPSK
TCP-IP / USB	digital modulator
Gateway	
<u>COM-1006</u>	COM-1012/1019 DSSS digital
Reed-Solomon	modulator
encoder	
	<u>COM-1028</u>
	FSK/MSK/GFSK/GMSK digital
	modulator
	COM-1023 BER generator, Additive
	White Gaussian Noise Generator
	COM-1009 Viterbi decoder (back to
	back)

ComBlock Ordering Information

COM-1010 Convolutional Encoder

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com