

COM-1014 TRIPLE DES ENCRYPTION / DECRYPTION

Key Features

- In-line Triple Data Encryption Algorithm (TDEA).
- Can be used as encryption or decryption device.
- Maximum throughput: 142 Mbit/s (TDEA / EBC mode) 47 Mbit/s (TDEA / CBC outer code)
- Key length: 192 bit.
- Supports ECB and CBC modes.
- Compliant with FIPS PUB 46-2, 46-3, 81.
- Single 5V supply
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom)
- Interfaces with 5V and 3.3V logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1014.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Electrical Interface

Input Module Interface	Definition
DATA_IN[7:0]	Input data.
	Format: parallel 8-bit wide
	or 1-bit serial. MSB is
	transmitted first.
	Alternatively contains an
	initialization vector IV if
	IV_FLAG is '1'.
SAMPLE_CLK_IN	Input signal sampling clock.
	One CLK-wide pulse. Read
	the input signal at the rising
	edge of CLK when
	$SAMPLE_CLK_IN = '1'.$
	Maximum throughput is one
	64-bit block every 18 CLKs
	(ECB mode) or every 54
COE DI	CLKs (CBC mode).
SOF_IN	Start of frame input. One
	CLK-wide pulse. Aligned
	with SAMPLE_CLK_IN.
	Indicates the start of a 64-bit
	wide data block to be
	Paguired in description
	mode. Can be internally
	generated in encryption
	mode when not provided at
	the input interface
SOC IN	Start of chain input One
	CLK-wide pulse Aligned
	with SAMPLE CLK IN
	and SOF IN. Used in cipher
	block chaining (CBC) mode
	to indicate the start of a new
	chain. Ignored in EBC
	mode.
IV_FLAG	Input flag indicating
	whether DATA_IN
	contains data (0) or the
	initialization vector IV (1)
	used for cipher block
	chaining mode (CBC).
	Ignored in EBC mode.
	Once all 64-bit of the initial
	vector are loaded, the flag
	should go low. This new

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2003 Issued 4/1/2003

	initialization vector will be
	used at the next start of
	chain. If no IV is loaded
	prior to a start of chain, the
	previous IV is used.
SAMPLE CLK IN REO	Output. One CLK-wide
	pulse Requests for input
	samples to the module
	upstream For flow-control
	purposes
CLK IN	Input reference clock for
0211_11	synchronous I/O and
	processing Vields internal
	CLK clock Typically 40
	MH ₇
Output Module	Definition
Interface	Definition
DATA IN[7:0]	Output data
2	Format: parallel 8-bit wide
	or 1-bit serial MSB is
	transmitted first
SAMPLE CLK OUT	Output sampling clock One
Shini EE_CER_OOT	CI K-wide pulse Read the
	output signal at the rising
	edge of CLK when
	SAMPLE CLK when $= 1$
SOF OUT	Start of frame output One
501_001	CLK wide pulse Aligned
	with SAMPLE CLK OUT
	Indicates the start of a 64-bit
	wide data block
SOC OUT	Start of chain output. One
500_001	CLK wide pulse Aligned
	with SAMPLE CLK OUT
	and SOF OUT Used in
	cipher block chaining (CBC)
	mode to indicate that a chain
	has been reset with a new
	initialization vector IV Can
	be ignored in FBC mode
SAMPLE CLK OUT REO	Input One CI K-wide pulse
Simil EE_CER_CCT_REQ	Requests for output samples
	from the module
	downstream. For flow-
	control purposes
Power Interface	4.75 - 5.25 VDC Terminal
i ower interface	block Power consumption
	is approximately
	proportional to the CLK
	frequency The maximum
	power consumption at 40
	MHz is 300mA
	11112 15 JUUIIIA.

Configuration (via Serial Link / LAN)

Complete assemblies can monitored and controlled centrally over a single serial or LAN connection.

The module configuration parameters are stored in non-volatile memory.

Parameters	Configuration
Input format	0 = 1 bit serial
	1 = 8-bit byte
	REG0 bit 1
Output format	0 = 1 bit serial
-	1 = 8-bit byte
	REG0 bit 2
Encrypt / Decrypt	0 = encrypt.
	1 = decrypt.
	REG0 bit 3
Mode	0 = ECB.
	1 = CBC.
	REG0 bit 4
Key1	Key for encryption pass 1. 64 bit.
	REG1 bit 7-0
	REG2 bit 15 - 8
	REG3 bit 23 - 16
	REG4 bit 31 – 24
	REG5 bit 39 – 32
	REG6 bit 47 – 40
	REG7 bit 55 – 48
	REG8 bit 63 - 56
Key2	Key for encryption pass 2. 64 bit.
	REG9 bit 7-0
	REG10 bit 15 - 8
	REG11 bit 23 - 16
	REG12 bit 31 – 24
	REG13 bit 39 – 32
	REG14 bit 47 – 40
	REG15 bit 55 – 48
	REG16 bit 63 - 56
Key3	Key for encryption pass 3. 64 bit.
	REG17 bit 7-0
	REG18 bit 15 - 8
	REG19 bit 23 - 16
	REG20 bit 31 – 24
	REG21 bit 39 – 32
	REG22 bit 47 – 40
	REG23 bit 55 – 48
	REG24 bit 63 - 56

Monitoring (via Serial Link / LAN)

Parameters	Monitoring
Version	Returns '1014x' when prompted for
	version number.

Operations

Electronic Codebook (ECB) Mode

The Electronic Codebook (ECB) mode is a basic block cryptographic method which transforms 64bits of input to 64 bits of output using a 64-bit key. This means that the same plain text block input will produce the same text block output with a fixed key. See NIST FIPS 81 specifications for details.

Cipher Block Chaining (CBC) Mode

In the Cipher Block Chaining (CBC) mode, data is organized in blocks of N*64 bits, where N is an integer. The first 64-bit data block is xored with an initial vector IV. All subsequent input blocks are xored with the encrypted output of the previous block. See NIST FIPS 81 specifications.

CBC is used as an outer code to the Triple Data Encryption Algorithm.

Because one has to wait for the first block to be fully encrypted before encrypting the following block, this implementation of CBC is about three times slower than the ECB mode.

Timing

The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

Input

Output

Mechanical Interface

Pinout

Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.

Input Connector J2

Output Connectors J3, J4

	А 1 В1	
CLK_OUT DATA_OUT(0) DATA_OUT(2) DATA_OUT(4) DATA_OUT(6) DATA_OUT(7) SAMPLE_CLK_OUT_REQ		SAMPLE_CLK_OUT DATA_OUT(1) DATA_OUT(3) DATA_OUT(5) GND SOF_OUT SOC_OUT
		GND
M&C RESERVED M&C RESERVED M&C TX JTAG TDO JTAG TCK	• • • • • B20	GND M&C RESERVED M&C RESERVED M&C RX JTAG TMS GND

I/O Compatibility List

(not an exhaustive list)

Input	Output
COM-1014 Triple DES	COM-1014 Triple DES
encoder (back to back	encoder (back to back
mode).	mode).
COM-7001 Turbo Code	COM-7001 Turbo Code
decoder	encoder

ComBlock Ordering Information

COM-1014 Triple DES Encryption / Decryption..

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com