

COM-1024

Key Features

- Baseband multipath simulator.
- 5 independently controllable paths described in terms of
 - delay (25 ns increment, 6.4us max)
 - Doppler (24-bit precision)
 - amplitude (16-bit multiplier)
- I/Os: 10-bit precision complex baseband samples.
- Maximum throughput 40 Msamples/s.
- Single 5V supply. Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Interfaces with 5V and 3.3V logic.

MULTIPATH SIMULATOR

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1024.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Gain 1 Frequency Delay 2 Gain 2 Offset 2 Frequency Σ Delay 3 Gain 3 Offset 3 Frequency Gain 4 Delay 4 Offset 4 Frequency Delay 5 Gain 5 Offset 5 02003501 dsf

Path 1 is the direct path, and as such represents the reference against which the other paths are described in terms of relative delay and relative frequency offset. The path 1 gain can be set to zero to simulate the absence of line of sight.

Block Diagram

Electrical Interface

Inner Interfect	Definition
Input Interface	Definition
DATA_I_IN[9:0]	In-phase sample. Unsigned
	10-bit format
DATA_Q_IN[9:0]	Quadrature sample. Unsigned
	10-bit format.
SAMPLE_CLK_IN	Input clock. One CLK-wide
	pulse. Read the input signals at
	the rising edge of CLK when
	$SAMPLE_CLK_IN = '1'.$
SAMPLE_CLK_IN_REQ	One CLK-wide pulse.
	Requests a sample from the
	module upstream. For flow-
	control purposes.
AGC_PWM_OUT	Output. When this module is
	connected directly to an
	external receiver (COM-300x),
	it generates an digital pulse-
	width modulated $0 - 3.3V$
	signal to control the gain prior
	to A/D conversion. The
	purpose is to use the maximum
	dynamic range while
	preventing saturation at the
	A/D converter.
	0 is the maximum gain, +3.3V
	is the minimum gain.
CLK_IN	Input reference clock for
	synchronous I/O and
	processing. Yields internal
	CLK clock. Typically 40
	MHz.

Output Module	Definition
Interface (Output data	
pushed out)	
DATA_I_OUT[9:0]	In-phase (real-axis) output
	sample. 10-bit precision.
	Format: 2's complement or
	unsigned as configured by
	user.
DATA_Q_OUT[9:0]	Quadrature (imaginary axis)
	output sample. Same format
	as DATA_I_OUT.
SAMPLE_CLK_OUT	Output clock. One CLK-
	wide pulse. Read the output
	signals at the rising edge of
	CLK when
	SAMPLE_CLK_OUT =
	'1'.
SAMPLE_CLK_OUT_REQ	Input. Sample request from
	the module downstream.
	For flow control purposes.
DAC_CLK_OUT	Output sampling clock for
	Digital to Analog
	Converters.

	DAC reads the output
	sample at the rising edge.
CLK_OUT	Output reference clock.
	Same as CLK_IN input
	clock and CLK internal
	processing clock. Typically
	40 MHz.
Output Module	Definition
Interface (Output data	
pulled)	
SAMPLE_CLK_REQ_IN	Input. 100 MHz clock
	requesting output samples.
DATA_OUT[13:0]	Output. Quadrature
	baseband samples, 14-bit
	precision, 2's complement
	format. Bit 13 is the most
	significant bit.
	The in-phase (I) and
	quadrature (Q) samples
	alternate. Output samples
	are synchronous with the
	falling edge of
	SAMPLE_CLK_REQ_IN.
TX_ENABLE	Output. Transmit enable.
	Active high.
	The first sample after
	TX_ENABLE becomes
	active is an in-phase (I)
	sample.
Serial Monitoring &	DB9 connector.
Control	115 Kbaud/s. 8-bit, no
	parity, one stop bit. No flow
	control.
Power Interface	4.75 – 5.25VDC. Terminal
	block. Power consumption
	is approximately
	proportional to the CLK
	frequency. The maximum
	power consumption at 40 MHz is 300mA.
	MITZ IS SUUMA.

Configuration (via Serial Link / LAN)

Complete assemblies can be monitored and controlled centrally over a single serial or, via adjacent ComBlocks, over LAN, USB, or CardBus connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

This module operates at an internal processing clock rate f_{clk} of 40 MHz.

Parameters	Configuration
Gain1	Path 1 amplitude gain. Expressed as an
	unsigned floating point number with 0.16
	format. Thus, 0xFFFF represents the
	(near) unity amplitude gain. 0x0000
	represents a null amplitude gain. Due to
	FPGA size limitations, the 5 least
	significant bits are ignored.
	REG0: bits 7-0
	REG1: bits 15-8
Gain2	Path 2 amplitude gain. Same format.
	REG2: bits 7-0
	REG3: bits 15-8
Gain3	Path 3 amplitude gain. Same format.
	REG4: bits 7-0
	REG5: bits 15-8
Gain4	Path 4 amplitude gain. Same format.
	REG6: bits 7-0
	REG7: bits 15-8
Gain5	Path 5 amplitude gain. Same format.
	REG8: bits 7-0
	REG9: bits 15-8
Delay2	Path 2 delay, expressed as n/f_{clk} , where f_{clk}
	is the reference clock (typically 40 MHz)
	and n is an integer in the range 0 to 255.
	For example, a 3 usec delay is specified
	as x78.
	REG10: bits 7-0
Delay3	Path 3 delay, same format as above.
	REG11: bits 7-0
Delay4	Path 4 delay, same format as above.
	REG12: bits 7-0
Delay5	Path 5 delay, same format as above.
	REG13: bits 7-0

Frequency	Path 2 frequency offset. The offset is	
Offset 2	expressed as a signed 2's complement	
Offset 2	number in the form	
	$f_{offset} / f_{sampling} * 2^{24}$, where $f_{sampling}$ is the	
	sampling frequency (as per the input	
	sampling clock SAMPLE_CLK_IN).	
	REG14: bits 7-0	
	REG15: bits 15-8	
	REG16: bits 23-16	
Frequency	Path 3 frequency offset.	
Offset 3	REG17: bits 7-0	
	REG18: bits 15-8	
	REG19: bits 23-16	
Frequency	Path 4 frequency offset.	
Offset 4	REG20: bits 7-0	
	REG21: bits 15-8	
	REG22: bits 23-16	
Frequency	Path 5 frequency offset.	
Offset 5	REG23: bits 7-0	
	REG24: bits 15-8	
	REG25: bits 23-16	
Output	0 = unsigned (for example to COM-	
sample	2001)	
format	1 = 2's complement (for example to	
	COM-4004)	
	REG26 bit 0	
Enable AGC	0 = disabled	
	1 = enabled AGC.	
~	REG26 bit 1	
Spectrum inversion	Invert Q bit.	
inversion	0 = off	
	1 = on	
	REG26 bit 2	

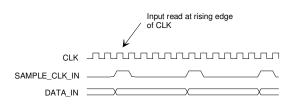
Operations

Gain

The gain for each path is represented as a 0.16 unsigned floating point number. For example 0x8000 represents a amplitude gain of 0.5. The user should be aware of the possibility for saturation at the output, even if the sum of all amplitude gain coefficients is less than one.

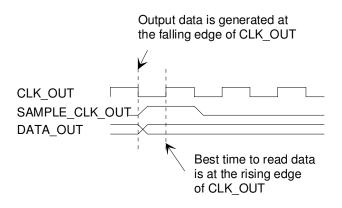
Output Interfaces

Two distinct output interfaces can be selected at the time of firmware upload:


- COM-1024-A output data is pushed to the next module (for example to COM-2001, or COM-1001/1012/1018/1027 demodulators).
- COM-1024-B output data is pulled by next module (for example by the COM-4004)

These two firmware versions can be downloaded from <u>www.comblock.com/download</u>

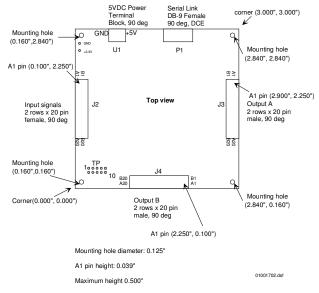
Timing


The I/O signals are synchronous with the rising edge of the reference clock CLK¹ (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

Input

Output

(REG26 bit1 = 0, data is pushed out, CLK=40 MHz)

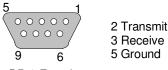


Test Points

Test points are provided for easy access by an oscilloscope probe.

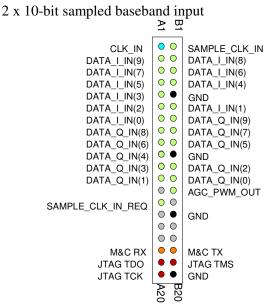
Test	Definition
Point	
TP1	I-channel most significant bit, input
TP2	I-channel most significant bit, path 1
TP3	I-channel most significant bit, path 2
TP4	I-channel most significant bit, path 3
TP5	I-channel most significant bit, path 4
TP6	I-channel most significant bit, path 5
DONE	FPGA DONE pin. High indicates proper
	download of the FPGA configuration file.

Mechanical Interface

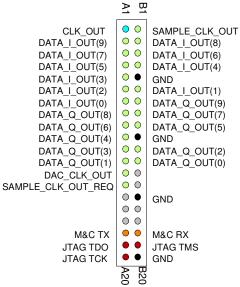


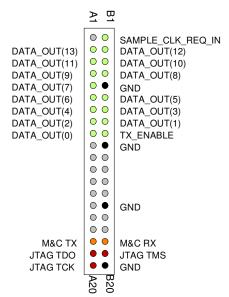
¹ The output timing for the interface with the COM-4004 module is synchronous with an external clock. For details, please refer to the COM-4004 specifications.

Pinout


Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.




Input Connector J2

Output Connectors J3/J4

2 x 10-bit parallel output samples This connector is used when output data is pushed out (Firmware option -A).

2x14-bit multiplexed output samples. This connector is used when output data is pulled out by the next module (Firmware option -B).

I/O Compatibility List

(not an exhaustive list)

Input	Output
COM-1002	COM-1001
BPSK/QPSK/OQPSK	BPSK/QPSK/OQPSK
modulator	demodulator
COM-1012/19 DSSS	COM-1011/18 DSSS
modulator	demodulator
COM-1028	COM-1027
FSK/MSK/GFSK/GMSK	FSK/MSK/GFSK/GMSK
modulator	demodulator
COM-1402	COM-1418 DS spread-
PSK/QAM/APSK	spectrum demodulator
modulator	
COM-3001/2/3/4/5/6/7/8/9	COM-1202/3
RF/IF/baseband receiver	PSK/QAM/APSK
	demodulator
COM-8001 arbitrary	COM-2001 Dual D/A
waveform signal generator	converters
	COM-4004 70 MHz IF
	modulator

Configuration Management

This specification is to be used in conjunction with VHDL software release 6.

The option and version of the FPGA configuration currently active can be read from the ComBlock Control Center in the configuration panel (advanced).

ComBlock Ordering Information

COM-1024 MULTIPATH SIMULATOR

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com