

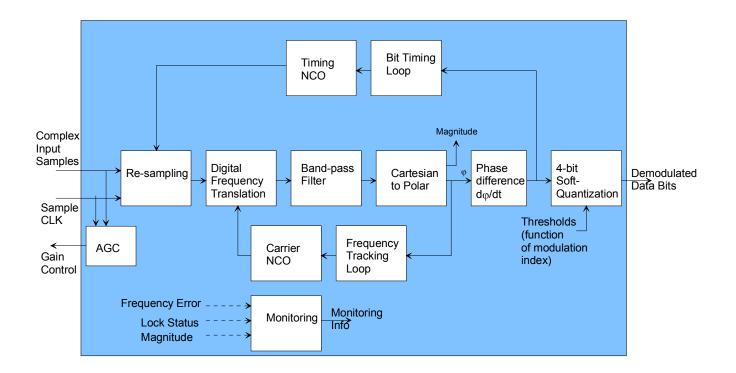
COM-1027

FSK/MSK/GFSK/GMSK DIGITAL DEMODULATOR

Key Features

- Demodulator for continuous phase FSK (CPFSK) and its derivatives:
 - Minimum shift keying (MSK)
 - Gaussian frequency shift keying (GFSK)
 - Gaussian minimum shift keying (GMSK)
- Programmable 2-, 4-, 8-ary FSK
- Programmable modulation index h [0.125 to 4]
- Programmable data rates up to 30/20/10 Mbps. (8-, 4-, 2-ary FSK).
- Coherent demodulator for better BER performances.
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1027.pdf</u>. These specifications are subject to change without notice.


For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Typical Applications

- GSM:
 - GMSK, modulation index h=0.5, BT = 0.3, bit rate: 270.833 Kbps, channel spacing: 200 KHz
- Bluetooth:
 - GFSK, modulation index h = 0.32, BT = 0.5
- DECT:
 - GFSK, BT = 0.5, bit rate: 1.152 Mbps, channel spacing: 1.728 MHz

Block Diagram

Electrical Interface

Input Module	Definition
Interface	
DATA_I_IN[9:0]	Modulated input signal, real axis.
	10-bit precision.
	Format: 2's complement or
	unsigned.
	Unused LSBs are pulled low.
DATA_Q_IN[9:0]	Modulated input signal, imaginary
	axis. 10-bit precision. Same format
	as DATA_I_IN. Unused LSBs are
	pulled low.
SAMPLE_CLK_IN	Input signal sampling clock. One
	CLK-wide pulse. Read the input
	signal at the rising edge of CLK
	when SAMPLE_CLK_IN = $'1'$.
	The minimum input sampling rate is
	8 samples per symbol. Sampling
	above 16 samples per symbol may
	cause aliasing whereby adjacent
	channels may interfere with the
	main signa.
	Samples can be consecutive. For

	example, SAMPLE_CLK_IN can
	be fixed at '1' to indicate that new
	input samples are provided once per
	CLK IN clock period.
	Signal is pulled-up.
AGC_OUT	Output. When this demodulator is
	connected directly to an analog
	receiver, it generates a pulse-width
	modulated signal to control the
	analog gain prior to A/D
	conversion. The purpose is to use
	the maximum dynamic range while
	preventing saturation at the A/D
	converter. 0 is the maximum gain,
	+3V is the minimum gain.
CLK IN	Input reference clock for
_	synchronous I/O. DATA x IN and
	SAMPLE CLK IN are read at the
	rising edge of CLK IN. Maximum
	40 MHz.
I	

Two basic types of output connections are available for user selection:

- direct connection between demodulator and data destination.

- Shared data bus connecting multiple demodulators to a single data destination (for signal diversity combining)

Output Module	Definition
Interface	
Direct connection	
between two	
ComBlocks,	
REG8(4) = '0'	
DATA_OUT[3:0]	4-bit soft-quantized demodulated
	bits. The most significant bit
	DATA_OUT(3) represents the
	demodulated information bit while
	the lower 3-bit represent the
	demodulated bit quality for use by a
	subsequent error correction decoder.
	Unsigned representation: 0000 for
	maximum amplitude '0', 1111 for
	maximum amplitude '1'.
BIT_CLK_OUT	Demodulated bit clock. One CLK-
	wide pulse. Read the output signal
	at the rising edge of CLK when
	$BIT_CLK_OUT = '1'.$
RX_LOCK	'1' when the demodulator is locked,
	'0' otherwise.
CLK_OUT	40 MHz output reference clock.
	Generated by dividing the internal
	processing clock: f _{clk} /2

Output Module	Definition
Interface	
Shared bus,	
REG8(4) = '1'	
BUS_CLK_IN	40 MHz input reference clock for
	use on the synchronous bus.
BUS_ADDR[3:0]	Bus address. Input (since this
	module is a bus slave). Designates
	which slave module is targeted for
	this read transaction.
	Read at the rising edge of
	BUS_CLK_IN
BUS_RWN	Read/Write#. Input (since this
	module is a bus slave).
	Indicates whether a read (1) or write
	(0) transaction is conducted. Read
	at the rising edge of BUS_CLK_IN.
	Read and Write refer to the bus
	master's perspective.
BUS_DATA[15:0]	Bi-directional data bus.
	Input when BUS_RWN='0'.
	Output when BUS_RWN='1'.
	Read latency is 2 BUS_CLK_IN
	periods. Minimum read cysle is 3
	BUS_CLK_IN periods. Reading
	can be continuous.
	Functional definition during read:
	• bit 0 BIT_CLK_OUT. '1' when

	DATA_I_OUT is available
•	bits(4:1) DATA_I_OUT[3:0] demodulated data stream.
•	bit 5 RX_LOCK.
•	bits(15:6) undefined.

Serial	DB9 connector.	
Monitoring &	115 Kbaud/s. 8-bit, no parity, one stop	
Control	bit. No flow control.	
Power	4.75 – 5.25VDC. Terminal block.	
Interface	Power consumption is approximately	
	proportional to the symbol clock rate	
	(f _{symbol clk}). The maximum power	
	consumption is 650mA.	

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• Asynchronous serial (DB9)

or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1027 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1027 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

COM1027 FSK/MSK/GF	SK/GMSK Digital Demod [
Symbol rate;	1000000 Symbols/s
Center frequency	y:Hz
M-ary number: 2-	-FSK (1 bit/symbol) 👻
Modulation index:	0.5 range 0 - 7.9
💟 Spectrum inve	rrsion 🔲 disable AFC
Input Format: uns	igned input (default) 🔽
Apply Ok	Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center "Advanced" configuration or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

All control registers are read/write.

Definitions for the <u>Control registers</u> and <u>Status</u> registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

This module operates at an internal processing clock rate f_{clk} of 80 MHz.

Most processing is done at the sampling rate / $f_{sample_clk} = 8 *$ symbol rate.

In the definition below, a few control register bits may be undefined to maintain backward compatibility with previous versions. They can be ignored by the user when using the latest firmware release.

Parameters	Configuration	
Symbol rate	24-bit signed integer expressed as	
(f_{symbol_clk})	fsymbol rate * 2^{24} / \mathbf{f}_{clk} .	
	The maximum symbol rate is 10	
	Msymbols/s (0x1FFFFF).	
	The data rate is 1x, 2x or 3x the symbol	
	rate depending on the M-ary number set	
	in REG8.	
	REG0 = bit 7-0 (LSB)	
	REG1 = bit 15 - 8	
	REG2 = bit 23 - 16 (MSB)	
Center	Nominal center frequency.	
frequency $(\mathbf{f}_{\mathbf{c}})$	This value is substracted from the	
	received signal actual center frequency.	
	24-bit signed integer (2's complement	
	representation) expressed as	
	$f_{c} * 2^{24} / (8*f_{symbol clk})$	
	Safe range to avoid aliasing:	
	+/- 2 * $f_{symbol clk}$	
	Note: the definition of the center	
	frequency is different for the COM-	
	1028 modulator and this demodulator.	
	REG3 = bits 7 - 0	
	REG4 = bits 15 - 8	
	REG5 = bits 23 - 16	

Inverse	1/(Madulation index b) Format 8.8
Modulation	1/(Modulation index h). Format 8.8 Thus, 0x0200 represents the inverse of a
Index 1/h	modulation index of 0.5. (MSK or GMSK
	modulation imply $h = 0.5$). Valid range for $1/h$: $0.125 - 4$
	REG6: bits 7:0 LSB
	REG7: bit 15:8: MSB
M-ary	Size of the symbol alphabet:
number	00 = 2-ary, 2-FSK, M=2
	01 = 4-ary, 4-FSK, M=4
	10 = 8-ary, 8-FSK, M=8
	REG8 bits 1-0
Input sample	0 = 2's complement
format	1 = unsigned
	In particular, all COM-300x receivers
	generate samples with unsigned format.
	REG8 bit 2
Spectrum	Whenever the received spectrum has been
inversion	inverted during the frequency up and
	down-conversions, this bit should be set.
	In particular, spectrum inversion occurs in
	most COM-300x receiver modules.
	0 = off, 1 = on
	REG8 bit 3
Point-to-	
point vs	Controls whether the output connection is
shared bus	point-to-point or multipoint-to-point over
output	a shared data bus (via a COM-9003
P	multiplexing connector for example). The
	J4 output connector pinout is affected by
	this control bit.
	0 = direct connection. Point to point.
	1 = shared data bus.
	REG8 bit 4
Disable AFC	New in Rev 8
	Disabling the AFC may be needed in
	some cases (e.g. when the bit stream is not
	balanced between zeros and ones).
	0 = AFC is on
	1 = AFC is disabled
	REG8 bit 5
Squelch	New in Rev 8
enable	The squelch circuit forces the
	demodulator output to '1' (UART stop
	bit) when the demodulated signal is too
	weak. This feature is useful when
	demodulating a good-quality 2-FSK signal
	carrying asynchronous UART characters.
	0 = Squelch is disabled
	1 = Squeich is enabled
	REG8 bit 6
Freeze	As the monitoring data is constantly
monitoring	• •
data	changing it is important to be able to
	changing, it is important to be able to
	prevent changes while reading a multi-
	prevent changes while reading a multi- byte parameter. Write a zero in bit 7 to
	prevent changes while reading a multi- byte parameter. Write a zero in bit 7 to freeze the monitoring data prior to reading
	prevent changes while reading a multi- byte parameter. Write a zero in bit 7 to freeze the monitoring data prior to reading it. Write a one to re-enable the update.
Bus address	prevent changes while reading a multi- byte parameter. Write a zero in bit 7 to freeze the monitoring data prior to reading

module on the output bus (if the output
bus is enabled in REG8 bit 4). Ignore
otherwise. This module acts as bus slave:
it performs the read transaction requested
by the bus master if and only if the bus
address matches its own address defined
here. This address must be unique among
modules connected to the same bus in
order to avoid conflicts.
REG9 bits 3-0

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Status Registers

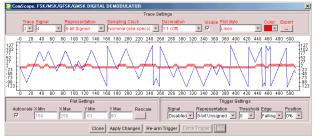
Diaital	atatura	maniatama	~ ** ~	mand am	1
Digital	status	registers	are	read-on	IV.
0		- 0			J .

Parameters	Monitoring
Carrier frequency	Residual frequency offset with
offset	respect to the nominal carrier
(fcdelta)	frequency.
	24-bit signed integer (2's
	complement) expressed as
	fcdelta * 2^{24} / (8*fsymbol
	rate).
	REG12 = bit 7 - 0
	REG13 = bit 15 - 8
	REG14 = bit 23 - 16
Received signal	8-bit unsigned
magnitude after	REG15 bit 7-0.
channel filtering	
AFC lock status	0 = unlocked
	1 = locked
	REG16 bit 0
Signal power detection	0 = below threshold
	1 = signal power detection
	REG16 bit 1

Test Points

Test points are provided for easy access by an oscilloscope probe at the J4 male connector.

Test	Definition
Point	
J4/A7	AFC lock status ($1 = locked$, $0 = unlocked$)
J4/B7	Signal power detection $(1 = signal power$
	presence detected, $0 = signal power below$
	threshold)
J4/A8	Recovered carrier (carrier NCO output MSB)
J4/B8	Recovered bit timing
	Compare with modulator bit timing.
J4/A9	Saturation condition detected at input samples
	DATA_I_IN or DATA_I_Q.
J4/B9	Internal 80 MHz clock


Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1027 signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal	Buffer
Trace I signals	Format	sampling	length
		rate	(samples)
1: Input I signal	8-bit	Input	512
1. input i orginal	signed or	sampling	512
	unsigned.	rate	
	(8MSB/10)	inte	
2: Cartesian-to-	8-bit	8 samples	512
Polar conversion:	signed	/symbol	512
phase	(8MSB/10)	/symbol	
3: Cartesian-to-	8-bit	8 samples	512
Polar conversion:	signed	/symbol	512
magnitude	(8MSB/14)	/Symbol	
4: Filtered Phase	8-bit	1 sample	512
difference at		/symbol	512
optimum	signed	/Symbol	
sampling instant	(8MSB/13)		
5: Recovered	8-bit	8 samples	512
carrier frequency	signed	/symbol	-
offset. Resolution	(8MSB/24)		
is fsymbol/32.	``´´		
Trace 2 signals	Format	Nominal	Capture
		sampling	length
		rate	(samples)
1: Input Q signal	8-bit	Input	512
	signed or	sampling	
	unsigned.	rate	
	(8MSB/10)		
2: front-end AGC	8-bit	f _{clk}	512
	unsigned	(80 MHz)	
	(8MSB/10)		
3: I signal after	8-bit	8 samples	512
elastic buffer,	signed	/symbol	
interpolation and	(8MSB/12)		
resampling at 8			
samples/symbol 4: Phase	0 1.4	0	510
difference	8-bit	8 samples	512
unicicie	signed	/symbol	
5: Recovered	(8MSB/10)	1	512
phase, after	8-bit	1 samples	512
scaling for	signed	/symbol	
modulation index	(8MSB/14)	(optimum	
(i.e. prior to soft		sampling	
quantization)		instant)	
Trigger Signal	Format		
1: AFC lock	Binary		
atatua			
status			
2: Signal power detection	Binary		

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk} processing clock as real-time sampling clock.

In particular, selecting the f_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing GMSK demodulated phase (blue) and reconstructed unfiltered symbols (red).

Operation

FSK Modulation

The FSK modulation and its derivatives (CPFSK, MSK, GMSK, GFSK) are best described by the following equations for the modulated signal s(t). The first equation describes a phase modulator, with the modulated centered around the center frequency f_c .

$$s(t) = \sqrt{\frac{2E_s}{T}} \cdot \cos(2\pi f_c t + \theta(t) + \theta_0)$$

where

- E_s is the energy per symbol
- T is the symbol period
- f_c is the center frequency
- $\theta(t)$ is the phase modulation

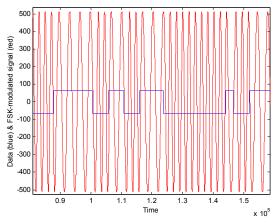
The COM-1027 implements a <u>continuous phase</u> FSK demodulator. It assumes that there are no phase discontinuities between symbols. The CPFSK phase modulation can be described as:

$$\theta(t) = \frac{\pi h}{T} \int_{0}^{t} a_{i}(t) dt$$

where:

- *h* is the modulation index. A modulation index of 0.5 yields a maximum phase change of $\pi/2$ over a symbol.

 a_i are the symbols. With 2-FSK, the binary data is represented as -1 (for '0') and +1 (for '1').


M-ary Number M

The transmitted data is grouped into symbols of size 1, 2, or 3 consecutive bits. The size of the symbol alphabet is thus M = 2, 4 or 8. The symbol MSB is sent first to the DATA OUT output.

The mapping between modulation symbol a_i and symbol alphabet is described in the table below:

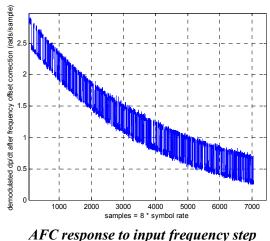
Modulation symbol a_i	Symbol alphabet
-1	2-FSK '0'
+1	2-FSK '1'
-3	4-FSK "00"
-1	4-FSK "01"
+1	4-FSK "10"
+3	4-FSK "11"
-7	8-FSK "000"
-5	8-FSK "001"
-3	8-FSK "010"
	7

-1	8-FSK "011"
+1	8-FSK "100"
+3	8-FSK "101"
+5	8-FSK "110"
+7	8-FSK "111"

Continuous FSK modulated signal example

FSK modulation is sometimes characterized by the frequency separation between symbols. The relationship between modulation index h and frequency separation is $f_{\text{separation}} = 0.5 \text{ h } f_{\text{symbol_clk}}$

Frequency Acquisition and Tracking


The demodulator comprises an automatic frequency control (AFC) loop to acquire and track the residual frequency offset of the modulated signal.

The tracking range f_{tracking} is bound by the following constraints:

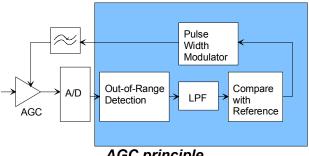
 $abs(\mathbf{f}_{tracking}/(4* \mathbf{f}_{symbol_clk})) + \mathbf{h}/8 < 1$

For example, if the modulation index **h** is 0.5, the maximum tracking range is \pm 3.75 **f**_{symbol_clk}. We recommend an additional 10% implementation margin.

The AFC response time is illustrated below for an initial frequency offset of $(3.37* \mathbf{f}_{symbol_clk})$ and modulation index h = 0.5.

AFC response to input frequency step

An AFC lock status is provided in status register REG16 and at a test point. AFC lock is declared when the residual frequency error is below 1/16th of the symbol rate.


Bit Timing Tracking

A first order loop is capable of acquiring and tracking bit timing differences between the transmitter and the receiver, up to \pm 500 ppm.

AGC

The purpose of this AGC is to prevent saturation at the external A/D converter(s) while making full use of the 10-bit A/D converter dynamic range. The principle of operations is outlined below:

- (a) out-of-range at the A/D converter is detected. An out-of-range condition occurs if the quantized A/D samples are equal to either "1111111111" or "0000000000".
- (b) The AGC will adjust the analog circuitry gain so that out-of-range conditions do not occur more than 1 in 64 samples in the average.
- (c) The resulting gain control signal is a pulsewidth modulated (PWM) signal with 10-bit precision.

AGC principle

The analog circuit shall filter this 3.3V low-voltage TTL PWM signal with a low-pass filter prior to controlling the analog gain. The PWM is randomized and its spectral distribution shifted to the higher frequencies so as facilitate the analog low-pass filter design.

The AGC loop bandwidth is typically 1 Hz when used in conjunction with COM-30xx receivers and a 40 MHz processing clock. The loop response time is assymetrical: it responds faster to a saturation condition than to a 'low signal' condition.

The gain control signal will increase if too many out-of-range conditions occur.

Implementation

The incoming samples are first stored in an elastic buffer to switch between the input clock (CLK IN, up to 40 MHz) and the internal processing clock (CLK, $f_{clk} = 80$ MHz). All subsequence signal processing is performed at a clock rate f_{clk} of 80 MHz.

The incoming In-phase (I) and quadrature (O) samples are subsampled at a rate of 8 samples per symbol under the control of the bit timing NCO.

The signal center frequency is then translated to zero to compensate for known (f_c) and unknown frequency offsets. The known frequency offset \mathbf{f}_{c} is under user control by means of the control registers REG3/4/5. Unknown frequency offsets are detected by the carrier tracking loop.

The resulting signal undergoes channel filtering to reject the out-of-band noise.

The coordinates for the filtered complex signal are converted from Cartesian (I,O) to Polar ($|A|, \phi$).

Differentiation $d\phi/dt$ reveals the modulated symbols and any residual frequency offset .

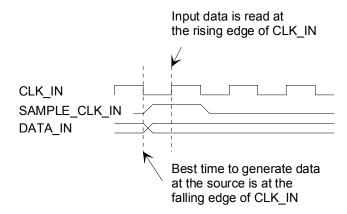
The Automatic Frequency Control (AFC) loop accumulates the differentiated phase $d\phi/dt$. The resulting sum is used to control the carrier NCO as a first order loop. The key underlying assumption is that the transmitted data is random and balanced, i.e. contains an equal number of 0's and 1's.

Timing

Clocks

An 80 MHz internal clock f_{clk} is generated by frequency doubling of the 40 MHz oscillator installed on the COM-1027 board. f_{clk} is <u>not</u> related to the CLK_IN clock. f_{clk} is used for internal processing and for generating the output clock CLK OUT = $f_{clk}/2$.

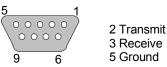
Input data DATA IN is first written into an input elastic buffer at the rising edge of CLK IN when SAMPLE CLK IN = '1'.

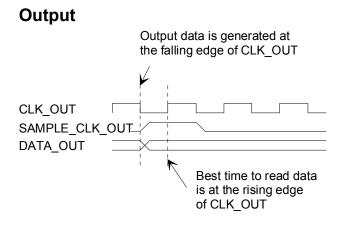

The data is read out of the input elastic buffer at the symbol rate * 1 (2-ary FSK), * 2 (4-ary FSK) or * 3 (8-ary FSK).

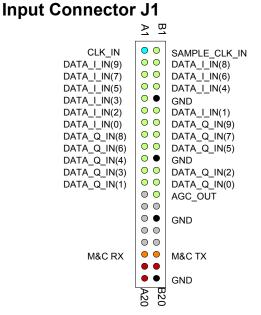
The input buffer size is 256 symbols.

I/Os

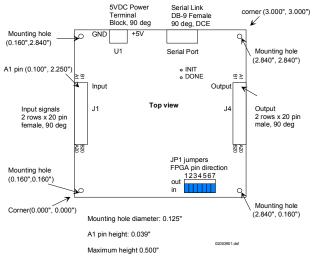
All I/O signals are synchronous with the rising edge of the reference clock CLK IN or CLK OUT (i.e. all signals transitions always occur after the rising edge of clock). The maximum frequency for CLK IN is 40 MHz. The frequency for CLK OUT is fixed at 40 MHz $(\mathbf{f}_{clk}/2)$.

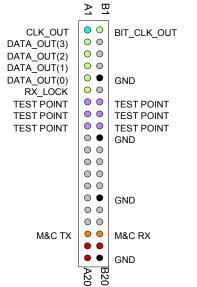

Input


Pinout

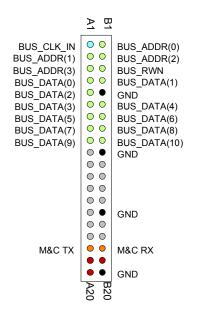

Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.





Mechanical Interface



Note: All seven JP1 jumpers must be in the 'IN' location.

Output Connector J4

This connector is used for point-to-point (i.e. direct) connection between two ComBlocks when control register $REG8(4) = 0^{\circ}$.

This connector is used for multipoint-to-point connection over a shared data bus when control register REG8(4) = '1'. COM-1027 is a bus slave. It always listens to BUS_CLK_IN, BUS_ADDR, BUS_RWN.

I/O Compatibility List

(not an exhaustive list)

Input	Output
COM-300x RF receivers	COM-1005 Bit Error
	Rate Measurement
COM-1008 variable decimation	COM-7001 Turbo
	code decoder
<u>COM-1028</u>	<u>COM-1009</u>
FSK/MSK/GFSK/GMSK digital	Convolutional
modulator (back to back)	decoder K=7, 5
COM-1023 BER generator,	<u>COM-1209</u> LDPC +
AWGN generator	long BCH error
	correction decoder
COM-1024 Multipath simulator.	<u>COM-5003</u> TCP-IP /
	USB Gateway

Configuration Management

This specification is to be used in conjunction with VHDL software revision 8.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1027 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

ComBlock Ordering Information

COM-1027 FSK/MSK/GFSK/GMSK digital demodulator

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com