

USB 2.0 / TCP-IP

Key Features

- Flexible modem configuration:
 - Modulation: BPSK, QPSK, OQPSK, $\pi/4$ DQPSK, 8-PSK, 16QAM, 16APSK, 32APSK.
 - Variable data rates up to 22 \circ Msymbols/s.
 - Center frequency: +/- 10 MHz. 0
 - Designed for continuous mode 0 applications. Fast re-acquisition after short link interruption.
 - Modulator and demodulator are 0 independently configured.
 - Phase ambiguity removal capability 0 when transmitting a periodic synchronization sequence
- Demodulator inputs:
 - Digital (2 * 10-bit complex, up to 105Msamples/s)
 - Analog baseband differential (2 * 10bit complex, 64 Msamples/s).
- Modulator outputs:
 - Digital (2 * 10-bit complex, up to 90 Msamples/s)
 - Digital (2 * 14-bit complex, up to 50 Msamples/s)
 - Analog baseband differential (2 * 12bit complex, 64 Msamples/ s^1).
- Modem data I/Os:
 - Two synchronous serial interfaces 0
 - USB 1.1/2.0. 0
 - TCP-IP/LAN (COM-1203). 0
- Extensive test & monitoring:
 - BER measurement when transmitting PRBS-11 test sequence or frame sync.
 - PRBS-11 test sequence generator 0

- **ComScope** –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: www.comblock.com/download/com1202.pdf. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to www.comblock.com/product list.htm .

COM-1202

COM-1203 (includes TCP-IP)

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2000-2009 Issued 7/16/2018

⁰ Loopback mode

¹ 128 MSamples/s after fixed x2 interpolation

Overall Block Diagram

Demodulator block diagram

Modulator block diagram

Use example #1 Modulator + Demodulator

Use example #2 Modulator + Demodulator

Use example #3 Modulator + Demodulator

Block Diagram (PSK / QAM / APSK Digital Demodulator)

Block Diagram (PSK / QAM / APSK Digital Modulator)

Electrical Interface

Demodulator Digital	Definition
Input Interfaces (J4)	
RX_DATA_I_IN[11:0]	Modulated input signal, real
RX_DATA_Q_IN[11:0]	and imaginary axes. 12-bit
	precision. Unsigned format.
	Unused LSBs are pulled low.
RX_SAMPLE_CLK_IN	Input signal sampling clock f _s .
	One CLK_IN-wide pulse. Read
	the input signal at the rising
	edge of CLK_IN when
	$RX_SAMPLE_CLK_IN = '1'.$
	The minimum input sampling
	rate is 4 samples/symbol.
	Samples can be consecutive.
	For example,
	RX_SAMPLE_CLK_IN can be
	fixed at '1' to indicate that new
	input samples are provided
	once per CLK_IN clock period.
	Signal is pulled-up.
CLK_IN	Input reference clock for
	synchronous I/O.
	RX_DATA_x_IN and
	RX_SAMPLE_CLK_IN are
	read at the rising edge of
	CLK_IN. Maximum 105 MHz.
AGC_PWM_OUT	Output. When this demodulator
	is connected directly to an
	external receiver (COM-300x),
	it generates an digital pulse-
	width modulated $0 - 5.5$ v
	signal to control the gain prior
	to A/D conversion. The
	dynamic range while
	preventing saturation at the
	Λ/D converter
	0 is the maximum gain ± 3.3 V
	is the minimum gain
Demodulator Analog	Definition
Input Interfaces (J7)	2
RX I P/RX I N	I-channel differential inputs.
	(P for +, N for -).
	200 Ohm input impedance.
	2Vpp differential (1Vpp on
	each RX_I_P and RX I N
	signal) for full scale $10-\overline{bit}$
	ADC conversion.
	Common-mode voltage is
	approximately 2.3V. It is
	recommended that the input be
	AC coupled.

RX_Q_P/RX_Q_N	Q-channel differential inputs.
	$(_P \text{ for } +, _N \text{ for } -).$
	Same electrical characteristics
	as above.
RX_AGC1	Output. When this demodulator
	is connected directly to an
	analog receiver, it generates an
	analog $0 - 3.3$ V signal to
	control the analog gain prior to
	A/D conversion. The purpose is
	to use the maximum dynamic
	range while preventing
	saturation at the A/D converter.
	0 is the maximum gain ± 3.3 V
	is the minimum gain
	Pin J7/A6.
RX_AGC2	Binary receiver gain control
_	output. Can be used to enable
	or bypass LNAs for example.
	'0' to bypass, '1' to enable.
	LVTTL (0-3.3V)
	Pin J7/A9
Demodulator Output	Definition
Interfaces (J5 or J4))	
DV DATA OUT[2.0]	Dama dulatan armahnan aya
$[KX_DATA_001[3:0]]$	Demodulator synchronous
KX_DATA_OUT[3:0]	serial output. Read at the rising
KX_DATA_001[3:0]	serial output. Read at the rising edge of CLK OUT when
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX BIT CLK OUT = '1'.
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'.
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit
KA_DATA_OUT[3:0]	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3).
RX_BIT_CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One
RX_BIT_CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the
RX_BIT_CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge
RX_BIT_CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when
RX_BIT_CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'.
RX_BIT_CLK_OUT RX_LOCK	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is
RX_BIT_CLK_OUT RX_LOCK	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise.
RX_BIT_CLK_OUT RX_LOCK RX_BIT_CLK_OUT_REQ	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise. Flow control input.
RX_BIT_CLK_OUT RX_BIT_CLK_OUT RX_BIT_CLK_OUT_REQ	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise. Flow control input. Demodulator will send
RX_BIT_CLK_OUT RX_BIT_CLK_OUT RX_BIT_CLK_OUT_REQ	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise. Flow control input. Demodulator will send demodulated data only if '1'.
RX_BIT_CLK_OUT RX_BIT_CLK_OUT_REQ CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX DATA OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise. Flow control input. Demodulator will send demodulated data only if '1'. Output reference clock.
RX_BIT_CLK_OUT RX_LOCK RX_BIT_CLK_OUT_REQ CLK_OUT	serial output. Read at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. 4-bit soft-quantized demodulated bits for use by subsequent error correction decoders. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '0', 1111 for maximum amplitude '1'. The information bit is the most significant bit RX_DATA_OUT(3). Demodulator bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK_OUT when RX_BIT_CLK_OUT = '1'. '1' when the demodulator is locked, '0' otherwise. Flow control input. Demodulator will send demodulated data only if '1'. Output reference clock. Typically 40 MHz.

Modulator Digital Input	Definition
Interfaces (.14 or .15)	2
TX DATA IN	Input data stream. Can be
	configured as one-bit
	serial symbol wide
	perallal or 8 bit perallal
	When configured as 1 hit
	when configured as 1-bit
	serial input, only
TY CAMPLE CLK DI	$IX_DATA_IN(0)$ is used.
IX_SAMPLE_CLK_IN	Input sample clock. One
	CLK-wide pulse. Read the
	input signals at the rising
	edge of CLK when
	$TX_SAMPLE_CLK_IN = $ '1'.
TX SAMPLE CLK IN REQ	Output, One CLK IN-
`	wide pulse.
	Requests a data bits from
	the module upstream. For
	flow-control purposes
CLK IN	Input reference clock for
—	synchronous I/O.
	TX DATA IN and
	TX SAMPLE CLK IN are
	aread at the rising edge of
	CLK IN Maximum 105
	MHz
Modulator Digital Output	Definition
Interfaces (J5)	
(Output data pushed out)	
TX DATA I OUT[9:0]	Modulated output signal.
L J	real axis. 10-bit precision.
	Format: unsigned
TX DATA Q OUT[9:0]	Modulated output signal.
	imaginary axis. 10-bit
	precision. Same format as
	TX DATA I OUT.
TX SAMPLE CLK OUT	Output signal sampling
	clock. Read the output
	signal at the rising edge of
	CLK when
	TX SAMPLE CLK OUT
	= '1'.
	TX_SAMPLE_CLK_OUT
	is fixed at '1' when the
	modulator is enabled.
	Fixed at '0' otherwise.
DAC_CLK_OUT	Output sampling clock for
	Digital to Analog
	Converters.
	DAC reads the output
	sample at the rising edge.
CLK_OUT	40 MHz output reference
	clock. Generated by
	dividing the internal

Modulator Digital Output	Definition
Interfaces (J5)	
(Output data pulled)	
TX_SAMPLE_CLK_REQ_IN	Input. 100 MHz clock
	requesting output samples.
TX_DATA_OUT[13:0]	Output. Quadrature
	baseband samples, 14-bit
	precision, 2's complement
	format. Bit 13 is the most
	significant bit.
	The in-phase (I) and
	quadrature (Q) samples
	are synchronous with the
	folling adge of
	SAMPLE CLK REO IN
TX ENABLE	Output Transmit enable
	Active high.
	The first sample after
	TX ENABLE becomes
	active is an in-phase (I)
	sample.
Modulator Analog	Definition
Output Interfaces (J7)	
TX_I_P / TX_I_N	I-channel differential
	outputs. (_P for +, _N for
	-). Full range 2Vpp
	differential (1Vpp on each
	IX_I_P and IX_I_N
	voltage is approximately
	1V
	Output impedance 100
	Ohm.
TX_Q_P / TX_Q_N	Q-channel differential
	outputs. (P for +, N for
	-). Same electrical
	characteristics as above.
TX_GAIN_CNTRL1	Transmitter gain control.
	Analog output in the range
	0 - 3.3V. Non-linear
	scale., see the transceiver
	specifications. 0V yield
TY END	The minimum gain.
	I ransmiller enable.
	'1' when the modulator
	analog output is enabled
	'0' otherwise.
RX TXN	Receive/Transmit#
	selection. LVTTL output
	signal.
	0'' = transmit
	1' = receive.
	Transmit is on when the
	modulator analog output is
	enabled.

Other Digit	al Definition
Modem	
Interfaces	
LISD 2 0	Tuna Procentala This interface
USB 2.0	Type B receptacie. This interface
	supports two virtual channels: one for
	monitoring and control, the other to
	convey information data between the
	modem and a host computer.
LAN	4 wire. 10Base-T/100Base-TX. RJ45
(COM-1203) connector. NIC wiring. Use standard
	category 5 cable for connection to a
	Hub/Switch. Use crossover cable for
	connection to a host computer.
	This interface supports three virtual
	channels: one for monitoring and
	control, the two other to convey
	demodulated data from the two
	demodulators back to a host computer.
Power	4.75 – 5.25VDC. Terminal block. Power
Interface	congumption is approximately propertional

IUWCI	4.75 = 5.25 V DC. Terminar block. Tower
Interface	consumption is approximately proportional
	to the symbol clock rate $(f_{symbol_{clk}})$. The
	maximum power consumption is TBDmA.

Important: Digital I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

- USB
- TCP-IP/LAN (COM-1203)

or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1202/3 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1202/3 module to be configured, next click the Settings button to display the Settings window shown below.

COM1202 PSK/QAM/APSK Modern & US	6B 2.0 Basic Settings 🛛 🔀
Modulation	
Symbol rate: 4999999.995	Modulation: BPSK
Signal gain: 65535	External transmitter gain: 255
Ouput center frequency: 0 Hz	Spectrum inversion
Spectrum shaping filter bypass	Insert periodic sync word
Test mode: Disabled	Input: USB 💌
Input format: 8-bit parallel 💌	Input bus address: 15
Output: Analog(J7 Bottom Connector)	
Demodulation	
Symbol rate: 1099950.008	Modulation: 16QAM
Input center frequency: 0 Hz	Spectrum inversion
AFC enable: Automatic AFC selection 💙	Input: 2*10 digital 💌
Rx ADC gain: 10 dB	V DC Bias removal
Detect periodic sync word	AGC response time: 10
Output: USB	4-bit soft quantization
General	
Test points: Demo	Julator & BER 💌
Apply Ok	Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Definitions for the <u>Control registers</u> and <u>Status</u> registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

This module operates at a fixed internal clock rate f_{clk} of 90 MHz.

Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

PSK/QAM/AP	SK Modulator
Parameters	Configuration
Symbol rate	32-bit unsigned integer expressed as
(f _{symbol clk})	fsymbol rate * 2^{32} / feet.
	The maximum symbol rate is $f_{cu}/4$
	(0x3FFFFFFF).
	However in practice it is recommended
	to limit the maximum symbol rate to
	$0.90*(f_{\pi}/4)$ to account for possible
	clock drifts between modulator and
	demodulator
	demodulator.
	The data rate is between 1x and 6x the
	symbol rate depending on the
	modulation time
	$\mathbf{PECO} = \mathbf{bits} 7 0 (\mathbf{ISP})$
	PEC1 = hits 15
	REGI = 0its IJ = 0 $REG2 = 144.02 = 16$
	REG2 = 0118 23 = 10 REG2 = 1.44 21 = 22 (MSD)
Nr. 1.1.4	$\frac{\text{REG3} = \text{DIS} 31 - 23 \text{ (MSB)}}{0 - \text{DRGV}}$
Modulation	0 = BPSK
туре	I = QPSK
	2 = OQPSK
	3-7 = reserved for future QPSK
	constellations
	8 = 8PSK constellation $8A$
	9 = 8PSK constellation 8B
	10 = 8PSK constellation 8C
	II = 8PSK constellation 8D
	$12 = \pi/4$ DQPSK (differential QPSK)
	13-15 = reserved for future 8PSK
	constellations
	16 = 16QAM
	17-23 reserved for future 16QAM
	constellations.
	$24 = 16$ APSK, DVB-S2, $\gamma = 2.85$
	25-31 reserved for future 16APSK
	$32 = 32$ APSK, DVB-S2, $\gamma 1 = 2.84$, $\gamma 2 =$
	5.27
	33-39 reserved for future 32APSK
	REG4 bits 5-0
Spectrum	Invert Q bit. This is helpful in
inversion	compensating any frequency spectrum
	inversion occurring in a subsequent RF
	frequency translation.
	0 = off
	1 = on
	REG4 bit 6
Channel filter	0 = enable the root raised cosine filter
enabled	(general case)
	1 = bypass the root raised cosine filter
	(special use in applications when a root
	raised cosine filter is not used in the
	demodulator)
	REG4 bit 7

Test mode	00 = disabled
	01 = internal generation of 2047-bit
	periodic pseudo-random bit sequence as
	modulator input. (overrides external input
	bit stream).
	10 = unmodulated carrier. (overrides)
	external input bit stream)
	REG5 bits 1-0
Tx unique	Insert periodic 32 bit unique word
word	(synchronization sequence) to assist the
	demodulator in synchronizing and
	recovering ambiguities The unique word
	is 5A 0F BE 66 transmitted MSb first
	2048 data symbols are transmitted
	between successive unique words. The
	unique word is using a simplified BPSK
	modulation irrespective of the modulation
	type
	0 = disabled
	1 = periodically insert a Unique word
	REG5 bit 3
Input	Input sample width
format	00 = 1 bit serial
IoIIIat	01 = symbol parallel where N input hits
	are read at once N is the number of hits
	ner symbol (1 for BPSK 2 for OPSK 3
	for 8-PSK / for 16-OAM and 16-APSK
	5 for 22 ADSK etc)
	5 101 52-AI SK, EU).
	1.10 - 8 bit parallel MSb is to be
	10 = 8-bit parallel. MSb is to be
	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4
Input	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4
Input	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left I4 connector direct point.
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks)
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP IP. port 1024
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM 1203)
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = hus interface through left
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM 8004 interface)
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) PEG5 bits 7 6 (two LSbc)
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) PEG9 bits 1.0 (two MSbs)
Input selection	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs)
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may very
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate.
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend checking for
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> saturation at test point TP4 (or using
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> <u>saturation at test point TP4</u> (or using ComScore for example) when changing
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> <u>saturation at test point TP4</u> (or using ComScope for example) when changing either the symbol rate or the signal gain
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> <u>saturation at test point TP4</u> (or using ComScope for example) when changing either the symbol rate or the signal gain.
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> <u>saturation at test point TP4</u> (or using ComScope for example) when changing either the symbol rate or the signal gain.
Input selection Signal gain	10 = 8-bit parallel. MSb is to be transmitted first. REG5 bits 5-4 Select the origin of the modulator input data stream. 0000 = from left J4 connector, direct point to point connection (most ComBlocks) 0100 = from right J5 connector xx01 = from USB xx10 = from LAN/TCP-IP, port 1024 (COM-1203) xx11 = bus interface through left connector (COM-8004 interface) REG5 bits 7-6 (two LSbs) REG9 bits 1-0 (two MSbs) Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for</u> <u>saturation at test point TP4</u> (or using ComScope for example) when changing either the symbol rate or the signal gain. REG6 = bits 7-0 (LSB) PEG7= bits 15.8 (MSP)

External	When using an external transmitter such as
transmitter	the COM-350x family, the transmitter gain
gain	can be controlled through the
control	17/TX GAIN CNTRI 1 analog output
control	signal Pange 0 2 3V
	Signal. Kange $0 = 5.5 \text{ V}$.
0.4.4	REG8 – bits /-0.
Output	Frequency translation.
Center	32-bit signed integer (2's complement
frequency	representation) expressed as
(fcout)	fcout * 2^{32} / \mathbf{f}_{clk} .
	Maximum recommended range: ± 10
	MHz.
	REG16 = bits 7-0 (LSB)
	REG17 = bits 15 - 8
	REG18 = bits 23 - 16
	$\frac{\text{REG10} = \text{bits } 23}{\text{REG10} = \text{bits } 31} = \frac{23}{23} \text{ (MSB)}$
Outrout	$\frac{1}{1} \frac{1}{1} \frac{1}$
	Direct the modulator output to one of
selection	several possible interfaces:
	000 = analog output (J7 bottom connector).
	Enables the external transmitter through
	$J7/TX_ENB = '1'$. Disable the external
	receiver through $J7/RX_TXN = '0'$.
	001 = digital 2*10-bit precision unsigned,
	J5 right connector. Interfaces with COM-
	2001 dual D/A converter Sampling rate
	2001 data $D/1$ converter. Sumpting fate.
	yo wisampies/s. (rek)
	010 = digital 2*14 bit precision signed
	15 right connector Compatible with COM
	1004
	4004.
	Note: this field selects whether an analog
	transceiver connected to J7 will be
	configured as transmitter (000) or receiver
	(any other value).
	REG20 bits 2-0
Input/Outpu	Unique 4-bit address identifying this
t Bus	module on the input bus (if the input bus is
address	enabled in REG5 bits 7-6) Ignore
	otherwise. This module acts as hus slaves it
	performs the read/write trans-ti-
	performs the read/write transaction
	requested by the bus master if and only if
	the bus address matches its own address
	defined here. This address must be unique
	among modules connected to the same bus
	in order to avoid conflicts.
	Same field is used for modulator input bus
	address and demodulator output bus
	address and demodulator output ous
	auuress.
	DEC01114 2.0

PSK/QAM/APSK Demodulator			
Parameters	Configuration		
Nominal symbol rate (f _{symbol_clk})	32-bit unsigned integer expressed as $f_{symbol_elk} * 2^{32} / f_{elk}$. The maximum symbol rate is $f_{elk}/4$ (0x3FFFFFFF).		
	The data rate is between 1x and 6x the symbol rate depending on the modulation type.		
	Max: 22 MSymbols/s. Min: use at symbol rates below 100 KSymbols/s is possible but can be complex because of effects such as of external local oscillator phase noise, frequency acquisition, oscillator stability, microphonics, etc.		
	REG26 = bits 7-0 (LSB) REG27 = bits 15 - 8 REG28 = bits 23 - 16 REG29 = bits 31 - 23 (MSB)		
Nominal Center frequency (f _c)	Expected center frequency of the received signal. 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk}$.		
	Maximum recommended range: ± 10 MHz. REG30 = bit 7-0 (LSB) REG31 = bit 15 - 8 REG32 = bit 23 - 16 REG33 = bit 31 - 23 (MSB)		
Modulation type	REG33 = bit 31 – 23 (MSB) 0 = BPSK 1 = QPSK 2 = OQPSK 3-7 = reserved for future QPSK constellations 8 = 8PSK constellation 8A 9 = 8PSK constellation 8B 10 = 8PSK constellation 8C 11 = 8PSK constellation 8D 12 = $\pi/4$ DQPSK (differential QPSK) 13-15 = reserved for future 8PSK constellations 16 = 16QAM 17-23 reserved for future 16QAM constellations. 24 = 16APSK, DVB-S2, γ = 2.85 25-31 reserved for future 16APSK 32 = 32APSK, DVB-S2, γ 1 = 2.84, γ 2 = 5.27 33-39 reserved for future 32APSK REG34 bits 5-0		

Spectrum	Invert O bit. This is helpful in	
inversion	compensating any frequency spectrum	
	inversion occurring during RF	
	frequency translations	
	0 = off	
	0 - 011	
	I = on	
1	REG34 bit 6	
reserved	00 REG35 bits 1-0	
AFC enable	The automatic frequency control circuit	
	extendeds the frequency acquisition	
	over $\pm 10\%$ of the symbol rate. When	
	disabled the receiver only means of	
	carrier acquisition is the carrier	
	frequency tracking loop which is	
	inherently limited to approximately 1%	
	finite of approximately 1%	
	of the symbol rate.	
	The AFC should only be active during	
	acquisition as it interferes with the	
	Costas Loop operation.	
	00 = automatic AFC selection.	
	01 = force AFC disabled. Carrier	
	tracking loop only	
	10 = force AFC enabled.	
	11 = reserved (test).	
	REG35 bits 3-2	
Reset	A one-time write of '1' forces the	
	carrier loops (carrier PLL, AFC) back	
	into acquisition mode. This can be used	
	to get out of any potential false lock	
	condition. There is no need to clear this	
	bit.	
	REG35 bit 7	
Input selection	00 = digital 2 * 12-bit unsigned	
	samples, left J4 connector	
	01 = IF undersampling interface	
	bottom 17 connector I-channel only	
	10 = baseband analog interface bottom	
	17 connector	
	11 = loophack mode modulator >	
	demodulator	
	DEG26 hits 1.0	
Dy ADC asim	Analog signals mign to the built in A/D	
KA ADC gain	Analog signals prior to the built-in A/D	
	converter can be amplified by steps of	
	about 1 dB. 1 ms 5-bit unsigned integer	
	controls the variable gain between 0	
	and 20 dB. Applies equally to the I and	
	Q channels. When the COM-	
	1202/1203 is used in conjunction with	
	the COM-3501 UHF transceiver, a	
	settings of $16 (x10)$ is recommended.	
	Please note that setting the gain too low	
	may cause the AGC to stop working.	
	REG36 = bits 6-2	

DC bias	Enable or disable the DC bias removal
removal	circuit at the input. May be helpful in
	cases where the external analog_to_
	digital converters introduce unwanted
	DC hing Ding is avaraged avar
	DC blas. Blas is averaged over
	approximately 1024 symbols. If the
	modulated data is not random over this
	averaging period, or if the modulation
	index is very small, it is recommended
	to disable the DC bias removal.
	0 = disabled/bypassed
	1 = enabled
	REG37 bit 0
Unique Word	0 = disabled
Synchronization	1 = enabled
detection	Enable when the modulator sends a
	periodic synchronization sequence. The
	demodulator inherent phase ambiguity
	can only be removed if this feature is
	enabled at both modulator and
	demodulator
	DEC27 bit 1
ACC1 response	KEG57 bit I
time	Users can to optimize AGC1 response
time	time while avoiding instabilities
	(depends on external factors such as
	gain signal filtering at the RF front-end
	and symbol rate). The RX_AGC1
	analog gain control signal is updated as
	follows
	0 = every symbol,
	1 = every 2 symbols,
	2 = every 4 symbols,
	3 = every 8 symbols, etc
	20 = every 1 million symbols.
	Valid range 0 to 20.
	REG37 bits 6-2
Output selection	000 = USB
•	001 = TCP-IP (COM-1203)
	010 = synchronous serial 15 right
	connector (COM-1202)
	011 = synchronous serial I4 left
	connector
	100 = synchronous series 10 connector
	used as demodulator output instead of
	test points
	101 = hug interferent human 1 15 + 14
	101 = bus interface through J5 right
	connector (COM-8003 interface)
	110 = demodulated complex (I+Q)
	baseband signal to J5 right connector.
	Interface compatible with an external
	COM-2001 dual D/A converter.
	Format: 2*10-bit precision, 90 MHz
	synchronous clock, 4 samples per
	symbol.
	REG38 bits 2-0

Output format	Users may have to tradeoff throughput
	versus soft-quantization when using
	the USB 2.0 or TCP-IP connection as
	media to route demodulated data to a
	host computer. Demodulated data can
	host computer. Demodulated data can
	be transmitted as 1-bit hard-quantized
	or 4-bit soft-quantized samples. Due
	to throughput limitation on these
	media, the maximum demodulated data
	rate may only be available as 1-bit
	'hard-quantized' samples. No such
	limitation exists when using the
	synchronous serial output format.
	0 = 1-bit hard quantized samples
	1 = 4-bit soft quantized samples
	REG38 bit 3
Test Points	In order to help debug a system the
1051 1 01110	tost points con he focused on a spacific
	uest points can be focused on a specific
	subsystem:
	00 = demodulator & BER
	measurement
	01 = modulator
	REG38 bits 5-4
IP address	4-byte IP address.
(COM-1203)	Example : 0x AC 10 01 80 designates
	address 172.16.1.128
	The new address becomes effective
	immediately (no need to reset the
	ComBlock)
	REG39: MSB
	REG40
	REG40 REC41
	REU41
100	REG42: LSB
10Base-17	00 = 10Base-T
100Base-1X	01 = 100Base-TX
LAN selection	10 = Auto negotiation
(CON1-1203)	Changes will take effect at the next
	power up.
	REG43 bits 1-0
Half / Full	Half-duplex is a safe configuration
duplex LAN link	which can be used with older
(COM-1203)	networking equipment Full duplex
· · · · · ·	results in higher throughput but may be
	incompatible with unswitched hubs
	0 = holf dupley
	0 = nan-suprex 1 = full durater
	1 - 1 i un auplex.
	Changes will take effect at the next
	power up. REG43 bit 2
Reserved	REG44 through 49 are reserved for the
	LAN MAC address. These registers are
	set at the time of manufacturing.
	÷

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Status Registers

PSK/QAM/APSK Demodulator MonitoringParametersMonitoring	
Parameters Monitoring	
Carrier Residual frequency offset with respect	
frequency to the nominal carrier frequency.	
offset 24-bit signed integer (2's complement))
(fcdelta) expressed as	
fcdelta * 2^{24} / fsymbol rate.	
SREG10 = bit 7 - 0	
SREG11 = bit 15 - 8	
SREG12 = bit 23 – 16	
Received signal 8-bit unsigned	
magnitude after SREG13 bit 7-0.	
channel	
filtering	
Carrier tracking Lock is declared if the standard	
loop lock status deviation of the phase error is less than	1
25deg rms.	
0 = unlocked	
1 = locked	
SREG14 bit 0	
Front-end AGC 8-bit unsigned value prior to DAC	
conversion to RX_AGC1.	
SREG15 bits 7-0.	
Bit errors When the transmission of periodic	
unique words is enabled, the	
demodulator can count the number of	
bit errors over 1024 received bits. This	S
BER measurement method works even	l
while transmitting regular payload data	a
(no need to switch the transmitter to	
the PRBS-11 test mode).	
This BER may be better than the	
payload data BER because it is	
performed on a simpler (BPSK)	
modulation.	
SREG16 bits 7-0 (LSB).	
SREG17 bits 1-0 (MSbs).	

(Re-)Writing to control register REG38 is recommended after a configuration change to enact the change (Note: this is done automatically when using the graphical user interface).

BER Measuren	nent
Parameters	Monitoring
Bit Errors	Bit errors can be counted when a PRBS-
	11 test sequence is transmitted.
	1
	Number of bit errors in a 1,000,000 bit
	window.
	32 bit unsigned.
	SREG20: error count[7:0]
	SREG21: error count[15:8]
	SREG22: error count[23:16]
	SREG23: error count[31:24]
	- <u> </u>
	The bit errors counter is updated once
	every periodic measurement window.
	Reading the value will not reset the
	counter.
BER	0 = not synchronized. 2047-bit pattern is
Synchronization	not detected.
status	1 = synchronized
	SREG24 bit 0.
n-PSK Phase	Number indicating the phase offset
ambiguity.	between modulated and demodulated
Cycle slip	data streams. A change in phase offset
detection.	denotes a cycle slip. The phase offset is
	expressed as
	00 = 0 deg
	01 = +90 deg
	10 = +180 deg
	11 = +270 deg
	SREG24 bits 2-1
TCP-IP Conne	ction Monitoring
Parameters	Monitoring
TCP-IP	1 = connected. 0 otherwise.
connection on	SREG30 bit 0
port 1024	
(data stream)	
TCP-IP	1 = connected. 0 otherwise.
connection on	SREG30 bit 2
port 1028	
(Monitoring	
& Control)	
Number of	32-bit byte count. Counter rolls over
bytes received	when reaching 0xFFFFFFFF.
from	SREG31: bits 7-0 (LSB)
demodulator	SREG32: bits 15-8
and forwarded	SREG33: bits 23-16
to host over	SREG34: bits 31-24 (MSB)
MAC address	Unique 48 hit hardware address (802.2)
WIAC addiess	Unique 40-bit naruware address ($\delta 02.3$). In the form SDEC25-SDEC26-SDEC27.
	III UIE IOIIII SKEU33:SKEU30:SKEU3/:
	SKEU4V

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1202/1203 signal traces and trigger are defined as follows:

trigger are del	med as tono	WS:	~
Trace 1	Format	Nominal	Capture
signals		sampling	length
(demod)		rate	(samples)
1: Input I signal	8-bit	f _{clk}	512
1 0	signed	cik	-
2. I signal after	8-hit	f.,	512
frequency	signed	Icik	512
translation to	signed		
baseband			
3: I signal after	8-bit	4 samples	512
decimation &	signed	/symbol	•
root raised	Signea	, symeer	
cosine filtering			
4: reserved			
5: Bit Error	8-bit	f _{clk}	512
Rate averaged	unsigned		
over 1Mbit	-		
window.			
Range:			
0 - 50% by			
steps of 2.10 ⁻³	E (NT 1	C t
Trace 2	Format	Nominal	Capture
signals		sampling	length
(demod)		rate	(samples)
1: Input Q	8-bit	f _{clk}	512
signal	signed		
2 D 11/1	0.1.1	1 1	510
2: Demodulated	8-bit	1 sample	512
i signar at	signed	/symbol	
opunium			
instant			
(compare with			
Trace 1 Signal			
3)			
3: cumulative	8-bit	symbol rate	512
symbol timing	signed	symoor race	012
error	signed		
4: front-end	8-bit	AGC update	512
AGC	unsigned	rate	
RX_AGC1	5		
5: reconstructed	8-bit	f _{clk}	512
carrier phase	unsigned		
Trace 3	Format	Nominal	Buffer
signals		samnling	length
signais		Samping	
(modulator)		rate	(samples)
(modulator) 1: serial bit	8-bit	rateBit rate	(samples) 512
(modulator) 1: serial bit stream	8-bit signed	rate Bit rate	(samples) 512
(modulator) 1: serial bit stream 2: modulator	8-bit signed 8-bit	rate Bit rate	(samples) 512 512
(modulator) 1: serial bit stream 2: modulator symbol (I-	8-bit signed 8-bit signed	rate Bit rate f _{symbol_clk}	(samples) 512 512

channel filter. Ideal constellation			
3: baseband Q- channel modulator output (after channel filter, before frequency translation and interpolation)	8-bit signed	4*f _{symbol_clk}	512
4: modulator output (I- channel) after frequency translation & interpolation	8-bit signed	f _{elk}	512
Trace 4 signals (modulator)	Format	Nominal sampling rate	Capture length (samples)
1: symbol	8-bit	f _{symbol_clk}	512
stream 2: modulator symbol (Q- channel) before channel filter. Ideal constellation	signed 8-bit signed	f _{symbol_clk}	512
3: baseband I- channel modulator output (after channel filter, before frequency translation and interpolation)	8-bit signed	4*f _{symbol_clk}	512
4: modulator output (Q- channel) after frequency translation & interpolation	8-bit signed	f _{clk}	512
Trigger	Format		
Signal 1: demodulated start of frame (SOF)	1-bit		
2: demodulated start of test PRBS-11 sequence	<mark>1-bit</mark>		
3: start of PRBS-11 test sequence at modulator	1-bit		
4: Unique word symbol insertion at modulator	1-bit		

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{elk} processing clock as real-time sampling clock.

In particular, selecting the f_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing QPSK Ichannel after root raised cosine filter, AGCs and phase correction 4x oversampling (red) and sampled at the optimum sampling instant once per symbol (blue).

Digital Test Points

Test points TP1 through TP10 are generally routed to the J9 10-pin 0.1" connector.

Note: Test points are disabled when the user selects the J9 connector to route output data streams to external devices using a ribbon connector. See control register REG38(2:0).

Four sets of test points are multiplexed onto the 10pin J9 connector, as selected through control register REG38(5:4).

PSK/QA	M/APSK Demodulator Test Points
TP1	Carrier lock status
TP2	Frame synchronization lock status (most
	reliable lock status, but valid only if the
	modulator is configured to send a periodic SOF
	frame synchronization sequence)
TP3	Recovered carrier (carrier NCO output MSB).
	Includes the fixed offset defined by the user as
	Nominal Center Frequency
TP4	Recovered symbol clock.
	Compare with modulator symbol clock.
TP5	Start of frame (SOF)
TP6	Raw SOF output from matched filter upon
	detection of the periodic unique word.
TP7	reserved
TP8	BER measurement: Synchronization
	(BER test points are valid only if a PRBS-11
	test sequence is transmitted)
TP9	BER measurement: Bit error
TP10	BER measurement: Start of PRBS-11 periodic
	test sequence detected with less than 10% bit
	errors.
PSK/QA	M/APSK Modulator Test Points
TP1	PRBS-11 test sequence
TP2	PRBS-11 periodic start of test sequence
TP3	Modulator Symbol rate.
TP4	Saturation at modulator output. If this condition
	occurs, please reduce the modulator gain.
TP5 –	undefined
TP10	
Other te	est points
DONE	'1' indicates proper FPGA configuration.
INITB	Reference clock \mathbf{f}_{clk} / 8 = 11.25 MHz.

Operation

This PSK/QAM/APSK modem is a generic modem. It does NOT comply with the DVB-S2 (ETSI EN 302 307) physical layer specifications.

Constellation: Symbol Mapping

The packing of serial data stream into symbols is done with the Most Significant bit first.

BPSK

QPSK

REG31(5:0) = 1 Gray encoding.

π/4	DQPSK
$\pi/4$	DQPSK

REG31(5:0) = 12	
Input symbol	Phase shift
00	$+ \pi/4$
01	$+ 3\pi/4$
10	- π/4
11	-3π/4

8PSK (1) REG31(5:0) = 8

8PSK (2) REG31(5:0) = 9

8PSK (3) REG31(5:0) = 10 Gray encoded.

8PSK (4)

REG31(5:0) = 11

16QAM

REG31(5:0) = 16

16APSK

REG31(5:0) = 24 $\gamma = R2 / R1 = 2.85$, best for code rate 3/4

32APSK

REG31(5:0) = 32 $\gamma 1 = 2.84, \gamma 2 = 5.27$, best for code rate 3/4

Channel Filter Response

The same root raised cosine filter type is used at the modulator for spectral shaping and at the receiver for noise rejection. This filter is used for all modulations types. It is applied to both In-phase and Quadrature signals at baseband. The filters vary slightly by their 'rolloff factor'. In order to minimize intersymbol interferences, the same rolloff factor should be used at both the modulator and demodulator. To this effect, users can select one of several rolloff factors: 20%, 25%, 35% and 40%. Changing the rolloff selection requires loading the firmware once using the ComBlock control center, then switching between up to four stored firmware versions (it takes 2.2 seconds).

The four firmware versions can be downloaded from <u>www.comblock.com/download</u>.

20% rolloff
25% rolloff
35% rolloff
40% rolloff

Filter Response (-B 25% rolloff) Positive Frequency Filter Response (25% rolloff) Scaled Frequency ([Frequency* 1024)/Sampling Frequency] (filter response on remaining filter a filter a filter response on remaining filter a f

Filter Response (-E 40% rolloff)

AGC1

The purpose of this AGC is to prevent saturation at the input signal A/D converters while making full use of the A/D converters dynamic range.

Therefore, AGC1 reacts to the composite input signal which may comprise not only the useful signal but also adjacent channel interferers and noise. The principle of operations is outlined below:

- (a) Digital input samples are first subsampled according to the user-defined AGC1 response time.
- (b) Near-saturation events are detected from the subsampled digital input samples and the AGC gain is adjusted accordingly.
- (c) An 8-bit D/A converter generates the analog gain control signal RX_AGC1 for use by the external variable gain amplifiers. (pin J7/A6, bottom connector)
- (d) Alternatively, a 10-bit Pulse-Width Modulated digital signal is also routed to pin J4/B13 (left connector) for use by an external variable gain amplifier.

AGC1 principle (analog output)

AGC1 principle (digital output)

Input Signal Pre-Processing

Prior to being routed to the demodulator, the input signal is subject to <u>AGC1</u>, <u>variable decimation</u>, and frequency translation to near-zero frequency.

Variable Decimation (Receiver)

Prior to the Root Raised Cosine channel filter, several other filters are used to reject wideband noise and adjacent channel interferences while decimating the input signal:

- two 10-taps half-band FIR filters in series
- a Cascaded Integrated Comb (CIC) filter The decimation rate R is set automatically as the largest value R such that R < (input sampling rate) / (8*symbol rate). The number of stages N and the differential delay M are fixed at 2 and 1 respectively.

An example of CIC filter response is shown below: X-axis is [0,input sampling frequency/2] Y-axis is the magnitude response in dB.

Matlab functions: hm = mfilt.cicdecim(r,m,n,ibits,obits,bps); fvtool(hm);

Variable Interpolation (Transmitter)

Following the Root Raised Cosine channel filter at the modulator, several other filters are used to clean the out-of-band output spectrum:

- two 10-taps half-band FIR filters in series
- a CIC interpolation filter. The interpolation factor R is set automatically.

The effect of the interpolation are illustrated below in the case of a 500 KSymbols/s QPSK modulation. The spectrum is captured at the output of a COM-3501 UHF transceiver.

Output spectrum with R = 40 *interpolation. QPSK*, 500 *KSymbols/s*.

Bit Error Rate Performances

The demodulator bit-error-rate performances are within 0.5 dB from the theoretical performances $\frac{1}{2}$ * erfc(E_b/N_o) of PSK demodulators over a wide range of E_b/N_o . Actual measurements (inclusive of the 70 MHz modulator and receiver) are shown below. The test conditions were as follows:

- ComBlock assembly: COM-1202 with 70 MHz modulator (COM-4004) and wideband receiver (COM-3004-B)
- Wideband 100 MHz noise
- QPSK, 4 Mbits/s

BER performance Theory(blue)/Actual(red)

LAN / TCP-IP (COM-1203)

Initial Configuration (via Serial Link)

The IP address must first be configured over non-TCP-IP connections such as USB or through other ComBlocks. This network setting is saved in nonvolatile memory (see <u>control registers REG38-41</u>). The TCP-IP connection can be used once the correct network setting is configured and after a COM-1203 power cycle.

TCP-IP

As a Server, the module opens the following sockets in listening mode:

Port 1024: modem data streams Port 1028: monitoring and control port

IP Protocols

This module supports the following IP protocols:

- Ping
- ARP
- TCP-IP

Ping

The module responds to ping requests with size up to 470 bytes. Ping can be used to check the module response over the network. Ping can be used at any time, concurrently with other transmit and receive transactions. For example, on a Windows operating system, open the Command prompt window and type "ping -t -1 470 172.16.1.128" to send pings forever of length 470 bytes to address 172.16.1.128.

Concept

The COM-1203 converts a serial data stream into a TCP-IP socket stream. TCP, IP and Network information, and in particular routing information, are not transmitted from one end to the other.

At the receiving end, the network client must first connect to the COM-1203 to receive data.

A key assumption is that the network client is reading as fast as the demodulator(s) can forward demodulated data. If not, data will be lost. The demodulated data is stored within a 16 Kbit elastic buffer within the COM-1203. This buffer size determines the maximum interruption for which the network client (operating system) can temporarily stop reading data. For example, for a 1 Mbit/s data stream, the maximum interruption allowed is 16.384 ms.

Throughput Benchmarks

The COM-1203 is capable of a sustained (average) throughput of 50 Mbits/s over 100base-Tx. In most cases, the sustained throughput is limited by the TCP-IP client computer and the application running on the client computer as illustrated in the one-way data transfer benchmark below:

Throughput tests conditions	Throughput
Client: Intel Pentium 4 2.6 GHz running	41 Mbits/s min
winsock-based console application.	54.7 Mbits/s max
Connection over LAN switch. No other	
network connection. No other application	100 Mbytes
running.	received in 16.0
COM-1203 configured as 'Auto	
Negotiation". 100Base-Tx connection.	seconas.

Format Conversion

Serial to parallel conversion occurs when converting the demodulated data stream into 8-bit byte over the TCP-IP link. The key rule is that the first received bit is placed at the MSb position in the byte.

Timing

Clocks

The clock distribution scheme embodied in the COM-1202/1203 is illustrated below.

Baseline clock architecture Yellow = 60 MHz reference clock Green = f_{clk} processing zone 90 MHz Dark Blue = output clock(40/90 MHz) Light Blue = external input clock Brown = 64 MHz I/O zone

The core signal processing performed within the FPGA is synchronous with the processing clock \mathbf{f}_{elk} . In order to minimize clock jitter, the processing clock is derived from a 60 MHz reference clock with low-jitter. \mathbf{f}_{elk} is <u>not</u> related to the CLK_IN clock. \mathbf{f}_{elk} is used for internal processing and for generating the output clock CLK_OUT.

The signals at the digital input connector J4 are synchronous with the CLK_IN signal at J4/A1.

The signals at the digital output connector J5 are synchronous with the 40 MHz CLK_OUT signal derived from the 60 MHz reference clock.

The signals at the analog front-end interface are synchronous with the 64 MHz reference clock generated by the FPGA.

16Kbit dual-port RAM elastic buffers are used at the boundaries between I/Os and internal processing area.

l/Os

All I/O signals are synchronous with a reference clock located on pin A1 of the 40-pin interface connector. The general rule is that the output signals are generated at the falling edge of the synchronous clock while the input signals are read at the rising edge of the synchronous clock, as illustrated in the simplified timing diagrams below.

Input

Mechanical Interface

Schematics

The board schematics are available on the ComBlock CD-ROM supplied with the module and on-line at http://www.comblock.com/download/com_1200sch ematics.zip

Hardware Block Diagram

Pinout

USB

USB type B receptacle, as the COM-1202/1203 is a USB device.

Analog I/O Connector J7

Connector J4

J4 as modulator input / demodulator output

Connector J5

J5 as modulator output (data pulled) COM-1202 only. Not applicable for COM-1203.

Test/Output Connector J9

The connector pinout shown above is used when a demodulated data streams is routed to the J9 connector (See <u>See Demodulator output selection</u>, REG38(2:0)).

I/O Compatibility List

(not an exhaustive list)
Demodulator Input
COM-300x RF receivers
COM-350x RF transceivers
COM-1023 BER generator, Additive White Gaussian
Noise Generator
COM-1024 Multipath simulator.
COM-8001 Arbitrary Waveform Generator, 256 MB/ 1GB,
40 Msamples/s
Demodulator Output
COM-1009 Convolutional decoder K=7
<u>COM-7002</u> Turbo code encoder/decoder
<u>COM-7002</u> Turbo code encoder/decoder <u>COM-8002</u> High-speed data acquisition. 256MB/1GB, 40
<u>COM-7002</u> Turbo code encoder/decoder <u>COM-8002</u> High-speed data acquisition. 256MB/1GB, 40 Msamples/s.
<u>COM-7002</u> Turbo code encoder/decoder <u>COM-8002</u> High-speed data acquisition. 256MB/1GB, 40 Msamples/s. Host PC via USB 2.0
COM-7002COM-7002Turbo code encoder/decoderCOM-8002High-speed data acquisition. 256MB/1GB, 40Msamples/s.Host PC via USB 2.0COM-5003LAN 10Base-T/100Base-TX / IP network
COM-1002COM-7002Turbo code encoder/decoderCOM-8002High-speed data acquisition. 256MB/1GB, 40Msamples/s.Host PC via USB 2.0COM-5003LAN 10Base-T/100Base-TX / IP networkinterface
COM-7002COM-7002Turbo code encoder/decoderCOM-8002High-speed data acquisition. 256MB/1GB, 40Msamples/s.Host PC via USB 2.0COM-5003LAN 10Base-T/100Base-TX / IP networkinterfaceCOM-5101Signal/Power conditioning & RS422 interface

Modulator Input	
COM-1010 Convolutional encoder	
COM-7002 Turbo code encoder/decoder	
Host PC via USB 2.0	
COM-5003 LAN 10Base-T/100Base-TX / IP network	
interface	
COM-5101 Signal/Power conditioning & RS422 interface	
Modulator Output	
COM-2001 Digital-to-Analog Conversion, Baseband	
COM-4004 70 MHz IF Modulator	
COM-350x RF transceivers	
COM-1023 BER generator, AWGN generator	
COM-1024 Multipath simulator.	
Digital interfaces	
COM-1200/1300/1400/8000 FPGA development platforms	

Configuration Management

This specification document is consistent with the following software versions:

- COM-1203/1203 FPGA firmware: Version 8 and above.
- ComBlock Control Center graphical user interface: Revision 2.56 and above.

The option and version of the FPGA configuration currently active can be read from the ComBlock Control Center in the configuration panel (advanced).

Troubleshooting

Subpar performance

• Check that the modulator does cause any saturation (saturation causes significant phase errors). Using an oscilloscope, verify that the modulator test point TP4 stays low. If saturation pulses are visible on the oscilloscope, reduce the modulator signal gain until saturation no longer occurs.

It is a good practice to check for such saturation after changing the symbol rate, the modulation type or the modulator signal gain.

• Check that the receiver gain control loop is stable. The loop stability depends on the symbol rate, on the user-defined AGC1 loop response time and on the external RF receiver. Increase the AGC1 response time until gain oscillations go away.

Comparison with Previous ComBlocks

Key	Improvements with respect to COM-1001
BPS	SK/QPSK/OQPSK demodulator
-	Several additional modulations: $\pi/4$ DQPSK, 8PSK,
	16QAM, 16APSK, 32APSK.
-	Higher symbol rate (22 versus 10 MSymbols/s).
-	Built-in digital anti-aliasing filter with variable
	decimation (no need for COM-1008)
-	Built-in phase ambiguity removal.
-	32-bit numerically controlled oscillators for carrier
	and symbol timing (versus 24-bit)
-	Significant increase in center frequency tuning range
-	Increased frequency acquisition range (to +/- 10% of
	the symbol rate) by automatic frequency control
	during acquisition.
-	Analog or Digital input signals (versus digital-only)
-	Analog gain control output for fast response (versus
	slower pulse-width modulated gain control).
-	User-programmable AGC response time.
-	Multiple output interfaces: USB2.0, TCP-IP (COM-
	1203), synchronous serial (versus synchronous serial
	only)
-	Built-in BER measurement (no need for COM-1005)
-	ComScope monitoring of key internal demodulator
	signals.
Key	Improvements with respect to COM-1002
	BPSK/QPSK/OQPSK modulator
-	Several additional modulations: $\pi/4$ DQPSK, 8PSK,
	16QAM, 16APSK, 32APSK.
-	Includes better interpolation filter (CIC).

- 32-bit numerically controlled oscillators for carrier and symbol timing (versus 24-bit)
- Significant increase in center frequency tuning range.
- Analog or Digital output signals (versus digital-only)
- Multiple input interfaces: USB2.0, TCP-IP (COM-1203), synchronous serial, synchronous parallel (versus synchronous only)
- ComScope monitoring of key internal modulator signals.

ComBlock Ordering Information

COM-1202

 $\ensuremath{\mathsf{PSK}}\xspace$ / QAM / APSK modem with USB2.0 interface

COM-1203 PSK / QAM / APSK modem with USB2.0 / TCP-IP interface

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com