

COM-1229/1230 DUAL DEMODULATORS (n-FSK / n-PSK / QAM / APSK) with USB 2.0 / TCP-IP

Key Features

- Dual demodulators
 - Concurrent demodulation
 - Independently programmable data rate and center frequency.
- <u>Demodulator 1</u>: continuous phase FSK (CPFSK) and its derivatives (MSK, GFSK, GMSK, 2-,4-,8-ary FSK).
 - o Programmable 2-, 4-, 8-ary FSK
 - Programmable modulation index h [0.125 to 4]
 - Variable data rates up to 10 Msymbols/s =
 - ✓ 30/20/10 Mbps. (8-, 4-, 2-ary FSK).
 - Designed for continuous mode applications. Fast re-acquisition after short link interruption.
- <u>Demodulator 2</u>: BPSK, QPSK, OQPSK, 8PSK, 16QAM, 16APSK, 32APSK
 - Variable data rates up to 20 Msymbols/s
- Demodulator complex (I&Q) input can be either
 - digital (2 * 10-bit complex, up to 80 Msamples/s)
 - analog (64 Msamples/s).
- Demodulated data can be routed to
 two synchronous serial interfaces
 - USB 1.1/2.0.
 - TCP-IP/LAN (COM-1230).
- Extensive monitoring:
 - o Demodulator lock
 - o Frequency error
 - o AGC gain
 - o SNR measurement.
 - BER measurement when transmitting PRBS-11 test sequence.

- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1229.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

COM-1230 (includes TCP-IP)

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2006 Issued 2/5/2006

Overall Block Diagram

Block Diagram (FSK Digital Demodulator1)

Block Diagram (n-PSK / QAM / APSK Digital Demodulator2)

Electrical Interface

	Digital Input	Definition
	Interfaces (J4)	
	DATA_I_IN[9:0]	Modulated input signal, real axis.
		10-bit precision. Synchronous with
		rising edge of CLK_IN. Format: 2's
		complement or unsigned.
		Unused LSBs are pulled low.
Y	DATA_Q_IN[9:0]	Modulated input signal, imaginary
		axis. 10-bit precision. Same format
		as DATA_I_IN.
	SAMPLE_CLK_IN	Input signal sampling clock \mathbf{f}_{s} . One
		CLK_IN-wide pulse. Read the
		input signal at the rising edge of
		CLK_IN when SAMPLE_CLK_IN
		= '1'.
		The minimum input sampling rate
		is 8 samples per symbol for FSK
		modulation and 4 samples/symbol
		for PSK, QAM and APSK
		modulations. Samples can be
		consecutive. For example,
		SAMPLE_CLK_IN can be fixed at
		'1' to indicate that new input samples are provided once per
		CLK_IN clock period.
		Signal is pulled-up.
	CLK_IN	Input reference clock for
		synchronous I/O. DATA_x_IN and
		SAMPLE CLK IN are read at the
		rising edge of CLK_IN. Maximum
		80 MHz.

Analog	Definition
Input	
Interfaces	
(J7)	
RX_I_P /	I-channel differential inputs. (_P for +,
RX_I_N	_N for -).
	200 Ohm input impedance.
	2Vpp differential (1Vpp on each RX_I_P
	and RX_I_N signal) for full scale 10-bit
	ADC conversion.
	Common-mode voltage is approximately
	2.3V. It is recommended that the input be
	AC coupled.
RX_Q_P /	Q-channel differential inputs. (_P for +,
RX_Q_N	_N for -).
	Same electrical characteristics as above.
RX_AGC1	Output. When this demodulator is
	connected directly to an analog receiver,
	it generates an analog $0 - 3.3$ V signal to
	control the analog gain prior to A/D
	conversion. The purpose is to use the
	maximum dynamic range while
	preventing saturation at the A/D
	converter.
	0 is the maximum gain, $+3.3V$ is the
	minimum gain.
	Pin J7/A6.

Output Interfaces	Definition
USB 2.0	Type B receptacle. This interface supports two virtual channels: one for monitoring and control, the other to convey a high-speed demodulated data stream from demodulator demod1 OR demod2 back to a host

		computer. Use USB 2.0 approved
		cable for connection to a host
		computer. Maximum recommended
		cable length is 3'.
	LAN	4 wire. 10Base-T/100Base-TX. RJ45
	(COM-1230	connector. NIC wiring. Use standard
		category 5 cable for connection to a
		Hub/Switch. Use crossover cable for
		connection to a host computer.
		This interface supports three virtual
		channels: one for monitoring and
		control, the two other to convey
		demodulated data from the two
		demodulators back to a host
		computer.
	DATA_OUT	
		the rising edge of CLK_OUT when
		BIT CLK $OUT = '1'$.
		4-bit soft-quantized demodulated bits
		for use by subsequent error correction
		decoders. Unsigned representation:
		0000 for maximum amplitude '0',
		1111 for maximum amplitude '1'.
		The information bit is the most
		significant bit DATA_OUT(3).
	BIT_CLK_O	T Demodulated bit clock. One CLK-
		wide pulse. Read the output signal at
		the rising edge of CLK_OUT when
		$BIT_CLK_OUT = '1'.$
	RX_LOCK	'1' when the demodulator is locked,
		'0' otherwise.
	CLK_OUT	Output reference clock. Typically 40
P*		MHz.
	Power	4.75 – 5.25VDC. Terminal block. Power
	Interface	consumption is approximately proportional
		to the symbol clock rate (f_{symbol_clk}) . The
		maximum power consumption is 650mA.
		1 1

Important: Digital I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration

5

Complete ComBlock assemblies can be monitored and controlled centrally over a single USB (default), TCP-IP/LAN (COM-1230), Serial or PC Card connection (via adjacent ComBlocks).

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

This module operates at a fixed internal clock rate \mathbf{f}_{clk} of 80 MHz.

n-FSK Demodulator1		
Parameters	Configuration	
Variable	Set the CIC Filter characteristics:	
Decimation	CIC_N number of stages, 1 to 8	
	CIC_M differential delay 1 to 2	
	CIC R decimation 1 to 16384	
	Number of truncated output bits: 0 to 63	
	Set $R = 1$ to bypass this stage.	
	REG0 bits 3-0: CIC_N	
	REG0 bits 5-4: CIC_M	
	REG1: CIC_R LSB	
	REG2: CIC_R MSB	
	REG3 bits 5 - 0: number of truncated	
	output bits	
Nominal	32-bit unsigned integer expressed as	
Symbol rate	fsymbol rate * 2^{32} / f _{clk} .	
(f_{symbol_clk})	The maximum symbol rate is $f_{clk}/8$	
	(0x1FFFFFFF).	
	The data rate is 1x, 2x or 3x the symbol	
	rate depending on the M-ary number set	
	in REG15.	
	REG5 = bit 7-0 (LSB)	
	REG6 = bit 15 - 8	
	REG7 = bit 23 - 16	
	REG8 = bit 31 - 23 (MSB)	
Nominal	This frequency value is subtracted from	
Center	the received signal actual center	
frequency (\mathbf{f}_{c})	frequency.	
	32-bit signed integer (2's complement	
	representation) expressed as 2^{32} (2)	
	$\mathbf{f_c} * 2^{32} / \mathbf{f_{clk}}.$	
	Maximum theoretical range: $\pm \mathbf{f}_{clk}$ /2.	
	REG9 = bit 7-0 (LSB)	
	REG10 = bit 15 - 8	
	REG11 = bit 23 - 16	
	REG12 = bit 31 - 23 (MSB)	
Inverse	1/(Modulation index h). Format 8.8	
Modulation		
Index 1/h	Thus, 0x0200 represents the inverse of a	
	modulation index of 0.5. (MSK or	
	GMSK modulation imply $h = 0.5$). Valid	
	range for 1/h : 0.125 – 4	
	REG13: bits 7:0 LSB	
	REG14: bit 15:8: MSB	
M-ary number	Size of the symbol alphabet:	
-	00 = 2-ary, 2-FSK, M=2	
	01 = 4-ary, 4-FSK, M=4	
	10 = 4-ary, 4-1-SK, M=4 10 = 8-ary, 8-FSK, M=8	
	•	
~	REG15 bits 1-0	
Channel filter	Selects the channel filter:	
selection	00 = no filter	
	01 = raised cosine filter 25% rolloff.	
	REG15 bits 3-2	
Spectrum	Invert Q bit.	
inversion		
	Flips the baseband modulation spectrum.	
	Does not affect any frequency error. 0 = off	

		1	Г
		1 = on	
	AFC enable	REG15 bit 4	
	AFC enable	An automatic frequency control circuit	
		can be enabled to acquire and track the	
		received signal center frequency in	
		applications where the frequency error is	
		prohibitive.	
		00 = automatic AFC selection based on	
		the lock status.	
		01 = force AFC disabled. No carrier	
		acquisition and tracking.	
		10 = force AFC enabled.	
	Г	REG15 bits 6-5	
	Force (Re-)	A one-time write of '1' forces the loops	
	acquisition	back into acquisition mode. This can be	
	acquisition	used to get out of any potential false	
		lock condition. There is no need to clear	-
		this bit.	
	DOUGANU	REG15 bit 7	
	n-PSK/QAM/ Parameters	APSK Demodulator2	
	Variable	Configuration Set the CIC Filter characteristics:	-
	Decimation	CIC_N number of stages, 1 to 8	
	Deemanon	CIC_M differential delay 1 to 2	
		CIC_R decimation 1 to 16384	
		Number of truncated output bits: 0 to 63	
		Number of francated output bits. 0 to 05	
		Set $\mathbf{R} = 1$ to bypass this stage.	
			Ī
		REG18: bits 3-0: CIC_N	
		REG18: bits 5-4: CIC_M	
		REG19: CIC_R LSB	
		REG20: CIC_R MSB	
- -		REG21 bits 5 - 0: number of truncated	
		output bits	
	Nominal	32-bit unsigned integer expressed as	
	Symbol rate	fsymbol rate * 2^{32} / \mathbf{f}_{clk} .	
	(f _{symbol_clk})	The maximum symbol rate is $\mathbf{f}_{elk}/4$	
		(0x3FFFFFF).	
		The data rate is between 1x and 6x the	
		symbol rate depending on the	-
		modulation type.	
		REG23 = bit 7-0 (LSB)	
		REG24 = bit 15 - 8	
		REG25 = bit 23 - 16	
		REG26 = bit 31 - 23 (MSB)	
	Nominal	This frequency value is subtracted from	
	Center	the received signal actual center	
	frequency (\mathbf{f}_{c})	frequency.	
		32-bit signed integer (2's complement	
		representation) expressed as $1 + 2^{32} + 2^{32}$	
		$f_{c} * 2^{32} / f_{clk}$	
		Maximum theoretical range: $\pm \mathbf{f}_{clk}$ /2.	
		REG27 = bit 7-0 (LSB)	
		REG28 = bit 15 - 8	
		REG29 = bit 23 - 16	
	Modulat	REG30 = bit 31 – 23 (MSB)	
	Modulation	0 = BPSK 1 - OPSK	F
	type	1 = QPSK	L

	2 = OQPSK
	3-7 = reserved for future QPSK
	constellations
	8 = 8PSK constellation 8A
	9 = 8PSK constellation 8B
	10 = 8PSK constellation 8C
	11 = 8PSK constellation $8D$
	12-15 = reserved for future 8PSK
	constellations
	16 = 16QAM
	17-23 reserved for future 16QAM
	constellations.
	24 = 16APSK
	25-31 reserved for future 16APSK
	32 = 32APSK
	33-39 reserved for future 32APSK
G (REG31 bits 5-0
Spectrum	Invert Q bit.
inversion	0 = off
	1 = on
	REG31 bit 6
Channel filter	0 = enable the root raised cosine filter
bypass	(general case)
	1 = bypass the root raised cosine filter
	(special use in applications when a root
	raised cosine filter is not used in the
	modulator.)
	REG31 bit 7
Carrier	00 = nominal
frequency	01 = 2x loop gain
tracking loop	10 = 4x loop gain
	10 - 4x 100p gam
gain	
gain	11 = 8x loop gain
gain	11 = 8x loop gain
gain	11 = 8x loop gain The loop gain can be changed
gain	11 = 8x loop gainThe loop gain can be changed dynamically to ease the transition
gain	11 = 8x loop gainThe loop gain can be changed dynamically to ease the transition between acquisition and tracking. A
gain	11 = 8x loop gainThe loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase
gain	11 = 8x loop gainThe loop gain can be changed dynamically to ease the transition between acquisition and tracking. A
gain	11 = 8x loop gainThe loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase
gain	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle
gain	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain
gain AFC enable	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1%
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate.
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation.
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection.
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation.
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection.
	11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection. 01 = force AFC disabled. Carrier
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection. 01 = force AFC disabled. Carrier tracking loop only 10 = force AFC enabled.
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection. 01 = force AFC disabled. Carrier tracking loop only
	 11 = 8x loop gain The loop gain can be changed dynamically to ease the transition between acquisition and tracking. A higher loop gain can be used to increase acquisition range or to minimize cycle slips at low data rate. A lower loop gain minimizes demodulation losses. REG32 bits 1-0 The automatic frequency control circuit extendeds the frequency acquisition over +/- 10% of the symbol rate. When disabled, the receiver only means of carrier acquisition is the carrier frequency tracking loop which is inherently limited to approximately 1% of the symbol rate. The AFC should only be used during acquisition as it interferes with the Costas Loop operation. 00 = automatic AFC selection. 01 = force AFC disabled. Carrier tracking loop only 10 = force AFC enabled. 11 = reserved (test).

threshold	
	standard deviation of the phase error.
	When std(phase error) is below this
	· ·
	user-defined threshold, the receiver is
	deemed to be locked onto the received
	signal.
	000 = 1 deg
	$001 = 2 \deg$
	•
	$010 = 5 \deg$
	$011 = 10 \deg$
	100 = 15 deg
	<u> </u>
	$101 = 20 \deg$
	110 = 25 deg (recommended settings
	when automatic AFC selection)
	REG32 bits 6-4
Force	A one-time write of '1' forces the carrier
(Re-)	
	loops (carrier PLL, AFC) back into
acquisition	acquisition mode. This can be used to
	get out of any potential false lock
	condition. There is no need to clear this
	bit.
	REG32 bit 7
-	REG32 UIT /
Inputs	
Parameters	Configuration
Input selection	00 = 2 * 10-bit unsigned samples, left J4
	connector
	01 = 2 * 10-bit signed 2's complement
	samples, left J4 connector
	10 = baseband analog interface, bottom
	J7 connector.
	REG35 bits 1-0
Rx ADC gain	
KX ADC gain	Analog signals prior to the built-in A/D
	converter can be amplified by steps of
*	about 1 dB. This 5-bit unsigned integer
	controls the variable gain between 0 and
	20 dB. Applies equally to the I and Q
	channels. When the COM-1229/1230 is
	used in conjunction with the COM-3501
	UHF transceiver, a settings of 10 (x0A)
	is recommended.
1	is recommended.
	DEC25 Lite C2
	REG35 = bits 6-2
AGC1	
	The front-end AGC1 response time is
AGC1 response time	The front-end AGC1 response time is user controlled. The RX_AGC1 analog
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol,
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols,
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols,
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols,
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols.
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20.
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols.
	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal
response time	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to-
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 4 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to-
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted DC bias. Bias is averaged over
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted DC bias. Bias is averaged over approximately 1024 symbols. If the
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted DC bias. Bias is averaged over approximately 1024 symbols. If the modulated data is not random over this
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted DC bias. Bias is averaged over approximately 1024 symbols. If the
response time DC bias	The front-end AGC1 response time is user controlled. The RX_AGC1 analog gain control signal is updated as follows 0 = every symbol, 1 = every 2 symbols, 2 = every 4 symbols, 3 = every 8 symbols, etc 20 = every 1 million symbols. Valid range 0 to 20. REG36 bits 4-0 Enable or disable the DC bias removal circuit at the input. May be helpful in cases where the external analog-to- digital converters introduce unwanted DC bias. Bias is averaged over approximately 1024 symbols. If the modulated data is not random over this

	to disable the DC bias removal.
	0 = disabled/bypassed
	1 = enabled
	REG36 bit 5
Output	
Parameters	Configuration
Output	000 = USB (demodulator 1 only)
selection	001 = TCP-IP (COM-1230)
	010 = synchronous serial J5 right
	connector (COM-1229)
	011 = synchronous serial J5 right
	connector (COM-1229) with swapped
	demodulated streams (1->B, 2->A).
	100 = synchronous serial J9 connector
	used as demod1 output instead of test
	points.
	101 = synchronous serial J9 connector
	used as demod2 output instead of test
	points.
	110 = USB (demodulator 2 only)
	REG37 bits 2-0
Output format	Users may have to tradeoff throughput
	versus soft-quantization when using the
	USB 2.0 or TCP-IP connection as media
	to route demodulated data to a host
	computer. Demodulated data can be
	transmitted as 1-bit 'hard-quantized' or
	4-bit 'soft-quantized' samples. Due to
	throughput limitation on these media,
	the maximum demodulated data rate
	may only be available as 1-bit 'hard-
	quantized' samples. No such limitation
	exists when using the synchronous serial
	output format.
	0 = 1-bit hard quantized samples
	1 = 4-bit soft quantized samples
	REG37 bit 3
BER	Selects which demodulator output data
measurement	stream is to be subjected to BER
data stream	measurement.
selection	0 = demodulator 1 (FSK)
	1 = demodulator 1 (PSK/QAM/APSK)
	REG37 bit 4
IP address	4-byte IP address.
(COM-1230)	Example : 0x AC 10 01 80 designates
	address 172.16.1.128
	The new address becomes effective
	immediately (no need to reset the
	ComBlock).
	REG38: MSB
	REG39
	REG40
	REG41: LSB
10Base-T /	00 = 10Base-T
100Base-TX	01 = 100Base-TX
LAN selection	10 = Auto negotiation
(COM-1230)	Changes will take effect at the next
	power up.
	REG42 bits 1-0
L	

Half / Full duplex LAN link (COM-1230)	0 = half duplex 1 = full duplex Changes will take effect at the next power up. REG42 bit 2
Reserved	REG43 through 48 are reserved for the LAN MAC address. These registers are set at the time of manufacturing. REG4, REG22 reserved for future use. Set as 0.

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Monitoring

Monitoring		
Digital status registers are read-only.		
n-FSK Demodulator1 Monitoring		
Parameters	Monitoring	
Carrier	Residual frequency offset with respect	
frequency	to the nominal carrier frequency.	
offset	24-bit signed integer (2's complement)	
(fcdelta)	expressed as	
	fcdelta * 2^{24} / (8*fsymbol rate).	
	SREG0 = bit 7 - 0	
	SREG1 = bit 15 - 8	
	SREG2 = bit 23 - 16	
Received	8-bit unsigned	
signal	SREG3 bit 7-0.	
magnitude		
after channel		
filtering		
AFC lock	0 = unlocked	
status	1 = locked	
	SREG4 bit 0	
Signal power	0 = below threshold	
detection	1 = signal power detection	
DOLLOADAL	SREG4 bit 1	
	PSK Demodulator2 Monitoring	
Parameters	Monitoring	
Carrier	Residual frequency offset with respect	
frequency offset	to the nominal carrier frequency.	
(fcdelta)	24-bit signed integer (2's complement) expressed as	
(Icdena)	fcdelta * 2^{24} / fsymbol rate.	
	SREG10 = bit $7 - 0$	
	SREG10 = bit 7 = 0 SREG11 = bit 15 - 8	
	SREG12 = bit 23 - 16	
Received	8-bit unsigned	
signal	SREG13 bit 7-0.	
magnitude		
after channel		
filtering		
Carrier	Lock is declared if the standard	
tracking loop	deviation of the phase error is less than	
<u>B</u> 100P		

lock status	the user-defined threshold. See Lock
IOCK Status	status threshold control.
	0 = unlocked
	1 = locked
	SREG14 bit 0
BER Measurer	
Parameters	Monitoring
Bit Errors	Number of bit errors in a fixed-length
Dividitions	window.
	32 bit unsigned.
	SREG20: error_count[7:0]
	SREG21: error_count[15:8]
	SREG22: error_count[23:16]
	SREG23: error_count[31:24]
	The bit errors counter is updated once
	every periodic measurement window.
	Reading the value will not reset the
	counter.
BER	0 = not synchronized. 2047-bit pattern is
Synchronization	not detected.
status	1 = synchronized
	SREG24 bit 0.
n-PSK Phase	Number indicating the phase offset
ambiguity.	between modulated and demodulated
Cycle slip detection.	data streams. A change in phase offset
detection.	denotes a cycle slip. The phase offset is
	expressed as
	$00 = 0 \deg$
	01 = +90 deg
	10 = +180 deg
	11 = +270 deg
TOP ID C	SREG24 bits 2-1
	ction Monitoring
Parameters TCP-IP	Monitoring Monitors the TCP-IP connection status
connection	on ports 1024 (demod1), 1026 (demod2)
connection	and 1028 (monitoring & control).
	1 = connected, 0 otherwise.
	SREG30 bit 0 port 1024 (demod1)
	SREG30 bit 1 port 1026 (demod2)
	SREG30 bit 2 port 1028 (M&C)
Number of	32-bit byte count. Counter rolls over
bytes received	when reaching 0xFFFFFFFF.
from	SREG31: bits 7-0 (LSB)
demodulator	SREG32: bits 15-8
and forwarded to host over	SREG33: bits 23-16
TCP-IP/LAN	SREG34: bits 31-24 (MSB)
MAC address	Unique 48-bit hardware address (802.3).
	In the form
	SREG35:SREG36:SREG37::SREG40

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1229/1230 signal traces and trigger are defined as follows:

	-	-		T 00
	Trace 1	Format	Nominal	Buffer
	signals		sampling	length
	(Input &		rate	(samples)
			Tate	(samples)
	demod1)			
	1: Composite	8-bit signed	f _{elk}	512
	input I signal	(8MSB/12)		
	2: I signal after	8-bit signed	Input	512
	frequency		•	512
	translation to	(8MSB/12)	sampling	
			rate	
	baseband			
	3: Cartesian-to-	8-bit signed	8 samples	512
	Polar	(8MSB/10)	/symbol	
	conversion:	(01.152,10)	, 0 9 1110 01	
	phase			
	4: Recovered	8-bit signed	1 camples	512
			1 samples	512
	phase, after	(8MSB/14)	/symbol	
	scaling for		(optimum	
	modulation		sampling	
	index (i.e. prior		instant)	
	to soft		mstant)	
	quantization)			
	5: Recovered	8-bit signed	8 samples	512
	carrier			512
		(8MSB/24)	/symbol	
	frequency			
	offset.			
	Resolution is			
	fsymbol/32.			
		T (37 1 1	C 1
	Trace 2	Format	Nominal	Capture
		Format		Capture length
	signals	Format	sampling	length
	signals (Input &	Format		
	signals (Input & demod1)	Format	sampling	length (samples)
*	signals (Input &	Format 8-bit signed	sampling rate	length
	signals (Input & demod1)	8-bit signed	sampling	length (samples)
	signals (Input & demod1) 1: Composite		sampling rate	length (samples)
	signals (Input & demod1) 1: Composite input Q signal	8-bit signed (8MSB/12)	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end	8-bit signed (8MSB/12) 8-bit	sampling rate	length (samples)
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC	8-bit signed (8MSB/12) 8-bit unsigned	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end	8-bit signed (8MSB/12) 8-bit	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10)	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10)	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12)	sampling rate	length (samples)512512512512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to-	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed	sampling rate	length (samples) 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12)	sampling rate	length (samples)512512512512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion:	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed	sampling rate	length (samples)512512512512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14)	sampling rate	length (samples) 512 512 512 512 512 512 512 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion:	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed	sampling rate	length (samples)512512512512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed	sampling rate	length (samples) 512 512 512 512 512 512 512 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude 5: Phase difference	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed (8MSB/10)	sampling rate	length (samples) 512 512 512 512 512 512 512 512 512 512 512 512 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude 5: Phase difference Trace 3	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude 5: Phase difference Trace 3 signals	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed (8MSB/10)	sampling rate	length (samples) 512 512 512 512 512 512 512 512 512 512 512 512 512 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude 5: Phase difference Trace 3	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed (8MSB/10)	sampling rate	length (samples) 512
	signals (Input & demod1) 1: Composite input Q signal 2: front-end AGC RX_AGC1 3: I signal after variable decimation and resampling at 8 samples/symbol 4: Cartesian-to- Polar conversion: magnitude 5: Phase difference Trace 3 signals	8-bit signed (8MSB/12) 8-bit unsigned (8MSB/10) 8-bit signed (8MSB/12) 8-bit signed (8MSB/14) 8-bit signed (8MSB/10)	sampling rate	length (samples) 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512

frequency translation to baseband	(8MSB/12)	sampling rate	
2: I signal after root raised cosine filtering	8-bit signed (8MSB/12)	4 samples /symbol	512
3: Demodulated I signal at optimum sampling instant	8-bit signed	1 sample /symbol	512
4: 2 nd AGC average control gain	8-bit unsigned (8MSB/14)	4 sample /symbol	512
Trace 4	Format	Nominal	Capture
signals (demod2)		sampling rate	length (samples)
1: I signal after	8-bit signed	4 samples	(samples)
variable	(8MSB/12)	/symbol	512
decimation and	(0WISD/12)	/symbol	
resampling			
2: phase error	8-bit	1 sample	512
variance	unsigned	/symbol	
(units: $(1 - (2 + 20 + 40)^2)$			
$(deg/360*2048)^2$ /256			
3: Demodulated	8-bit signed	4 samples	512
I signal after	o-on signed	/symbol	512
phase correction		/symbol	
and			
normalization			
4: Symbol	8-bit signed	1 sample	512
timing	(8MSB/32)	/symbol	
recovered phase	E		
Trigger	Format		
Signal 1: Demod1 AFC	Dinama		
lock status	Binary		
2: Demod1	Binary		
Signal power	Dinary		
detection			
3: BER	Binary		
measurement:	-		
detected start of			
PRBS-11			

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the \mathbf{f}_{clk} processing clock as real-time sampling clock.

sequence

In particular, selecting the \mathbf{f}_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing GMSK input baseband signal (I = blue, Q = red).

ComScope Window Sample: showing GMSK demodulated phase (blue) and reconstructed unfiltered symbols (red).

Digital Test Points

Test points TP1 through TP10 are generally routed to the J9 10-pin 0.1" connector.

<u>Note</u>: Test points are disabled when the user selects the J9 connector to route output data streams to external devices using a ribbon connector. See <u>control register REG37(2:0)</u>.

Digital	Definition	
Test		
Point		
TP1	Demod 1: AFC lock status (1 = locked, 0 =	
	unlocked)	
TP2	Demod 1: Recovered carrier (carrier NCO	
	output MSB). Includes the fixed offset	
	defined by the user as Nominal Center	
	Frequency.	
TP3	Demod 1: Recovered bit timing	
	Compare with modulator bit timing.	
TP4	Demod 2: lock status	
TP5	Demod 2: Recovered carrier (carrier NCO	
	output MSB). Includes the fixed offset	
	defined by the user as Nominal Center	
	Frequency.	
TP6	Demod 2: Recovered symbol clock.	
	Compare with modulator symbol clock.	
TP7	BER measurement: Synchronization	
TP8	BER measurement: Bit error	
TP9	BER measurement: Start of PRBS-11	
	periodic test sequence detected with less	

CH1 1.00V CH2 1.00V M 10.0 CH1 / Test points TP9 (orange) and TP10 (teal) are helpful in visualizing the demodulated data stream. The screen capture above shows the characteristic waveform of a PRBS-11 test sequence demodulated at 1 Mbit/s. Trigger the oscilloscope on the start of the PRBS-11 sequence TP9.

Analog Test Points

Key internal signals can also be monitored <u>continuously</u> by routing them to the bottom 40-pin connector and using the built-in high-speed D/A conversion module. Monitoring is non-obstrusive: it can be run concurrently with normal demodulation.

Analog Test	Definition
Point	
TPA1_P/TPA1_N	Demod2 demodulated I signal after phase
	correction and normalization
	Differential output signal
TPA2_P/TPA2_N	Demod2 demodulated Q signal after
	phase correction and normalization
	Differential output signal
TPA3	Demod2 Symbol clock.
	Approximately 50% duty cycle.
	Rising edge is located near the
	optimum sampling instant.
TPA4	Demod1 residual amplitude
	modulation (AM) of the received
	signal after the channel filter. This is
	the residual amplitude modulation not
	removed by the slow-moving AGC1.
	Single-ended output signal.
TPA5	Undefined.

Operation

FDMA

The COM-1229/1230 is capable of demodulating two frequency-division multiplexed signals simultaneously. An essential requirement is that the two modulated signals are sufficiently separated in frequency to mimize interferences. The center frequencies and bandwidths are independently programmable for both signals. Input center frequencies can be positive, zero, or negative.

Input Signal Pre-Processing

Prior to being routed to the FSK or n-PSK demodulator, the input signal is subject to <u>AGC1</u>, <u>variable decimation</u>, and frequency translation to near-zero frequency.

AGC1

The purpose of this AGC is to prevent saturation at the input signal A/D converters while making full use of the A/D converters dynamic range. Therefore, AGC1 reacts to the composite input signal which may comprise two FDMA signals, interferers and noise. The principle of operations is outlined below:

- (a) The magnitude of the complex input samples is computed and continuously averaged over 128 symbols.
- (b) The average magnitude is compared with a target magnitude threshold and the AGC gain is adjusted accordingly. Users can control the rate at which the gain control value is updated (to prevent instabilities, depending on the gain control slope and linearity at the RF front-end). See control register REG36.
- (c) An 8-bit D/A converter generates the analog gain control signal RX_AGC1 for use by the external variable gain amplifiers.

AGC1 principle

Variable Decimation

The user can reduce the rate of sampling of the input signal before it reaches the digital demodulator. The decimation rate R is user programmable. A Cascaded Integrated Comb (CIC) filter is used prior to decimation to prevent aliasing.

The implementation lets the user specify the number of stages N (in the range from 1 to 8), the differential delay M (in the range from 1 to 2), the decimation rate R (in the range from 8 to 16384) and the number of least significant bits to be truncated at the output (in the range from 0 to 63). It is generally recommended to set the latter to N*log2(RM), which is the bit growth during the CIC calculation due to the gain $G = (RM)^N$.

Examples of CIC filter responses are shown below: X-axis is [0,input sampling frequency/2] Y-axis is the magnitude response in dB.

Matlab functions: hm = mfilt.cicdecim(r,m,n,ibits,obits,bps); fvtool(hm);

The first zero is located at (input sampling frequency) / (R * M).

Generally, the best tradeoff between maximizing aliasing rejection and minimizing in-band signal distortion is to select R and M such that $R * M = (input \ sampling \ rate) / (4*symbol \ rate)$. For example, for a 1 Msymbols/s modulation, select R = 20, M = 1.

In order to prevent saturation, *the number of truncated bits must be selected to be the smallest integer greater than* $log2(RM)^N$. For example, if R = 20, M = 1, N = 2, truncate 10 output bits.

Bit Error Rate Measurement

A built-in BER measurement circuit counts the number of demodulated bit errors in a 1,000,000 bit window when the transmitted data stream is a 2047bit pseudo-random sequence (PRBS-11). Most ComBlock modulators can be configured to generate this test sequence.

The BER measurement circuit synchronizes itself with the demodulated stream. It also detects bit stream inversion and BPSK/QPSK phase ambiguities. The latter is useful in determining whether cycle slips occur in the demodulator. The synchronization status, last completed error count, and inversion/phase-ambiguity is reported in the status window.

This single BER measurement component is shared between the two demodulators.

Demodulator 1

FSK Modulation

The FSK modulation and its derivatives (CPFSK, MSK, GMSK, GFSK) are best described by the following equations for the modulated signal s(t). The first equation describes a phase modulator, with the modulated centered around the center frequency f_c .

$$s(t) = \sqrt{\frac{2E_s}{T}} \cdot \cos(2\pi f_c t + \theta(t) + \theta_0)$$

where

- E_s is the energy per symbol
- T is the symbol period
- f_c is the center frequency
- $\theta(t)$ is the phase modulation

The COM-1229/1230 implements a <u>continuous</u> <u>phase</u> FSK demodulator. It assumes that there are no phase discontinuities between symbols. The CPFSK phase modulation can be described as:

$$\theta(t) = \frac{\pi h}{T} \int_{0}^{t} a_{i}(t) dt$$

where:

- *h* is the modulation index. A modulation index of 0.5 yields a maximum phase change of $\pi/2$ over a symbol.

 a_i are the symbols. With 2-FSK, the binary data is represented as -1 (for '0') and +1 (for '1').

M-ary Number M

The transmitted data is grouped into symbols of size 1, 2, or 3 consecutive bits. The size of the symbol alphabet is thus M = 2, 4 or 8. The symbol MSB is sent first to the DATA_OUT output.

The mapping between modulation symbol a_i and symbol alphabet is described in the table below:

Modulation symbol a_i	Symbol alphabet
-1	2-FSK '0'
+1	2-FSK '1'

-3	4-FSK "00"
-1	4-FSK "01"
+1	4-FSK "10"
+3	4-FSK "11"
-7	8-FSK "000"
-5	8-FSK "001"
-3	8-FSK "010"
-1	8-FSK "011"
+1	8-FSK "100"
+3	8-FSK "101"
+5	8-FSK "110"
+7	8-FSK "111"

Continuous FSK modulated signal example

FSK modulation is sometimes characterized by the frequency separation between symbols. The relationship between modulation index h and frequency separation is $f_{\text{separation}} = 0.5 \text{ h } f_{\text{symbol_clk}}$

Frequency Acquisition and Tracking

The demodulator comprises an automatic frequency control (AFC) loop to acquire and track the residual frequency offset of the modulated signal.

The tracking range $f_{tracking}$ is bound by the following constraints: abs(${\bf f}_{tracking}/(4*~{\bf f}_{symbol_clk})) + {\bf h}/8 < 1$

For example, if the modulation index **h** is 0.5, the maximum tracking range is $\pm 3.75 \ f_{symbol_clk}$. We recommend an additional 10% implementation margin.

The AFC response time is illustrated below for an initial frequency offset of $(3.37* f_{symbol_clk})$ and modulation index h = 0.5.

AFC response to input frequency step

An AFC lock status is provided in status register SREG4 and at a test point. AFC lock is declared when the residual frequency error is below 1/16th of the symbol rate.

Bit Timing Tracking

A first order loop is capable of acquiring and tracking bit timing differences between the transmitter and the receiver, up to \pm 500 ppm.

Demodulator 2

Demodulator 2 is designed to demodulate several PSK, QAM and APSK modulations. The symbol mapping for each modulation is shown below:

Symbol Mapping

BPSK

QPSK REG31(5:0) = 1

8PSK (4) REG31(5:0) = 11

16QAM

REG31(5:0) = 16

Filter Response

For all demodulator 2 modulations, the channel filter is a root raised cosine filter, which is applied to both In-phase and Quadrature signals at baseband. In order to minimize intersymbol interferences, one expects the same filter to be used at the modulator. To this effect, users can select one of several rolloff factors: 20%, 25%, 35% and 40%. Changing the rolloff selection requires loading the firmware once using the ComBlock control center, then switching between up to four stored firmware versions (it takes 2.2 seconds).

The four firmware versions can be downloaded from <u>www.comblock.com/download</u>.

	onse (-A 20% rolloff)
COM-1229 -E	
COM 1220 E	400/ mallaff
COM-1229-D	35% rolloff
COM-1229-B	25% rolloff
COM-1229-A	20% rolloff

Filter Response (-E 40% rolloff)

(filter response normalized. 512 = 2*symbol rate)

LAN / TCP-IP (COM-1230)

Initial Configuration (via Serial Link)

The static IP address must first be configured over non-TCP-IP connections such as USB or through other ComBlocks. This network setting is saved in non-volatile memory (see <u>control registers REG38-</u> <u>41</u>). The TCP-IP connection can be used once the correct network setting is configured and after a COM-1230 power cycle.

IP Ports

The COM-1230 acts as a TCP-IP server. As such it opens the following sockets in listening mode:

- Port 1024: receive demodulator 1 data stream.
- Port 1026: receive demodulator 2 data stream.
- Port 1028: monitoring and control port.

In addition, the COM-1230 opens port 1029 as a UDP port for <u>remote reset</u>.

IP Protocols

This module supports the following IP protocols:

- Ping
- ARP
- TCP-IP

Ping

The module responds to ping requests with size up to 470 bytes. Ping can be used to check the module response over the network. Ping can be used at any time, concurrently with other transmit and receive transactions. For example, on a Windows operating system, open the Command prompt window and type "ping -t -1 470 172.16.1.128" to send pings forever of length 470 bytes to address 172.16.1.128.

Concept

The COM-1230 converts a serial data stream into a TCP-IP socket stream. TCP, IP and Network information, and in particular routing information, are not transmitted from one end to the other.

At the receiving end, the network client must first connect to the COM-1230 to receive data.

A key assumption is that the network client is reading as fast as the demodulator(s) can forward demodulated data. If not, data will be lost. The demodulated data is stored within a 16 Kbit elastic buffer within the COM-1230. This buffer size determines the maximum interruption for which the network client (operating system) can temporarily stop reading data. For example, for a 1 Mbit/s data stream, the maximum interruption allowed is 16.384 ms.

Throughput Benchmarks

The COM-1230 is capable of a sustained (average) throughput of 50 Mbits/s over 100base-Tx. In most cases, the sustained throughput is limited by the TCP-IP client computer and the application running on the client computer as illustrated in the one-way data transfer benchmark below:

Throughput tests conditions	Throughput
Client: Intel Pentium 4 2.6 GHz running winsock-based console application. Connection over LAN switch. No other network connection. No other application	41 Mbits/s min 54.7 Mbits/s max
running. COM-1230 configured as 'Auto Negotiation". 100Base-Tx connection.	100 Mbytes received in 16.0 seconds.

Format Conversion

Serial to parallel conversion occurs when converting the demodulated data stream into 8-bit byte over the TCP-IP link. The key rule is that the first received bit is placed at the MSb position in the byte.

UDP-IP

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset all TCP-IP connections gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a server 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-1230 is at a remote location.

The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-1230.

Client Programming

This section is intended to help designers who want to design their own client application. It can be skipped by users of ready-to-use applications such as Hyperterminal, ComBlock Control Center, etc.

In network terminology, the COM-1230 is a server. It awaits connection establishment and connection termination under the initiation of clients. It never initiate any connection establishment or termination.

An example of C-language Winsock programming for Windows OS clients is shown below. More information about Winsock programming can be found at

http://msdn.microsoft.com/library/default.asp?url=/l ibrary/en-

<u>us/winsock/winsock/finished_server_and_client_co</u> <u>de.asp</u>

Be sure to include a reference to the Winsock2 library (WS2_32.lib) in the project release and/or debug settings.

```
#include <stdio.h>
#include "winsock2.h"
void main() {
    // Initialize Winsock.
    WSADATA wsaData;
    int iResult = WSAStartup( MAKEWORD(2,2), &wsaData );
    if ( iResult != NO ERROR )
        printf("Error at WSAStartup()\n");
    // Create a socket.
    SOCKET m socket;
    m_socket = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );
    if ( m socket == INVALID SOCKET ) {
        printf( "Error at socket(): %ld\n", WSAGetLastError() );
        WSACleanup();
        return;
    }
   // Connect to a server.
    sockaddr in clientService;
    clientService.sin_family = AF_INET;
   insert destination address below
    clientService.sin_addr.s_addr = inet_addr( "172.16.1.128" );
   insert destination port below
    clientService.sin_port = htons(1024);
    if ( connect( m_socket, (SOCKADDR*) & clientService, sizeof(clientService) ) ==
SOCKET_ERROR) {
        printf( "Failed to connect.\n" );
        WSACleanup();
        return;
    }
    // Send and receive data.
    int bytesSent;
    int bytesRecv = SOCKET_ERROR;
    char sendbuf[32] = "Client: Sending data.";
    char recvbuf[32] = "";
    bytesSent = send( m_socket, sendbuf, strlen(sendbuf), 0 );
    printf( "Bytes Sent: %ld\n", bytesSent );
    while( bytesRecv == SOCKET_ERROR ) {
        bytesRecv = recv( m_socket, recvbuf, 32, 0 );
        if ( bytesRecv == 0 || bytesRecv == WSAECONNRESET ) {
            printf( "Connection Closed.\n");
            break;
        }
        if (bytesRecv < 0)
            return;
        printf( "Bytes Recv: %ld\n", bytesRecv );
    }
    return;
```

USB Interface

USB Throughput Benchmarks

The COM-1229/1230 is capable of a sustained (average) throughput of 85 Mbits/s over USB 2.0. In most cases, the sustained throughput is limited by the host computer and the application(s) running on the host computer.

Client Programming : USB 2.0

Software to help developers create USB high-speed communications between the COM-1229/1230 and a host PC is provided. The **USB 2.0 software package** includes the following:

- Windows device driver for XP/2000/Me (.sys, .inf files)
- Java API, .dll and application sample code
- C/C++ application sample code

The **USB 2.0 software package** is available in the ComBlock CD and can also be downloaded from <u>ComBlock.com/download/usb20.zip</u>. The user manual is available at

ComBlock.com/download/USB20_UserManual.pdf

Blue: supplied hardware Green: supplied ready-to-use software Yellow: source code examples

Timing

Clocks

The clock distribution scheme embodied in the COM-1229/1230 is illustrated below.

Baseline clock architecture Yellow = 60 MHz reference clock Green = f_{clk} processing zone Dark Blue = 40 MHz output clock Light Blue = 40 MHz external input clock Brown = 64 MHz I/O zone

The core signal processing performed within the FPGA is synchronous with the processing clock \mathbf{f}_{clk} . In order to minimize clock jitter, the processing clock is derived from a 60 MHz reference clock with low-jitter. \mathbf{f}_{clk} is <u>not</u> related to the CLK_IN clock. \mathbf{f}_{clk} is used for internal processing and for generating the output clock CLK_OUT.

The signals at the digital input connector J4 are synchronous with the CLK_IN signal at J4/A1. This clock can be 40 MHz.

The signals at the digital output connector J5 are synchronous with the 40 MHz CLK_OUT signal derived from the 60 MHz reference clock.

The signals at the analog front-end interface are synchronous with the 64 MHz reference clock generated by the FPGA. 16Kbit dual-port RAM elastic buffers are used at the boundaries between I/Os and internal processing area.

l/Os

All I/O signals are synchronous with the rising edge of the reference clock CLK_IN or CLK_OUT (i.e. all signals transitions always occur after the rising edge of clock). The maximum frequency for CLK_IN is 40 MHz. The frequency for CLK_OUT is fixed at 40 MHz.

Input

Output

LEDs

2 LEDs located close to the LAN RJ-45 jack provide summary information as to the LAN: Link and activity.

Mechanical Interface

СОМ-1230

Schematics

The board schematics are available on the ComBlock CD-ROM supplied with the module and on-line at <u>http://www.comblock.com/download/com_1200sch</u> <u>ematics.zip</u>

Pinout

USB

USB type B receptacle, as the COM-1229/1230 is a USB device.

Analog I/O Connector J7 P1 B1 • ٠ GND GND \bigcirc 0 RX_I_P RX_I_N GND •• GND 00 RX_Q_P RX_Q_N . . GND GND \circ \circ RX AGC1 TPA4 •• GND GND $\circ \circ$ 00 TPA3 •• GND GND TPA1_P 00 TPA1_N • • GND GND 00 TPA2 P TPA2 N • • GND GND ullet ulletGND TPA5 00 00 •• M&C TX M&C RX $\circ \circ$ • GND B20 A20

Input Connector J4 P B 00 CLK_IN SAMPLE_CLK_IN 00 DATA_I_IN(9) DATA_I_IN(8) 00 DATA_I_IN(7) DATA_I_IN(6) 00 DATA_I_IN(5) DATA_I_IN(4) • DATA_I_IN(3) GND 00 DATA_I_IN(2) DATA_I_IN(1) $\circ \circ$ DATA I IN(0) DATA Q IN(9) 00 DATA_Q_IN(8) DATA_Q_IN(7) $\circ \circ$ DATA_Q_IN(6) DATA_Q_IN(5) •• GND DATA_Q_IN(4) 00 DATA_Q_IN(3) DATA_Q_IN(2) $\circ \circ$ DATA_Q_IN(1) DATA_Q_IN(0) 00 00 •• GND 00 $\circ \circ$ • • M&C RX M&C TX JTAG TDI • • JTAG TMS •• JTAG TCK GND **B**20 Ъ 20

Note: unlike previous ComBlock demodulators, pin B13 does not supply a pulse-width modulated gain control signal to the RF/IF front-end. Instead, a more precise and faster-response analog gain control signal RX_AGC1 is available on J7/A6. Therefore, a wire must be soldered or crimped to the COM-300x receivers as illustrated below:

Analog AGC wire assembly instruction for COM-300x receivers. From COM-1229 J7/A6 to COM-300x pin B13.

Output Connector J5 P1 B1 00 CLK_OUT BIT_CLK_OUT_A \circ \circ DATA_OUT_A(3) \circ \circ DATA_OUT_A(2) 00 DATA_OUT_A(1) • DATA_OUT_A(0) GND RX_LOCK_A 00 BIT_CLK_OUT_B \circ \circ DATA_OUT_B(3) $\circ \circ$ DATA_OUT_B(2) \circ \circ DATA_OUT_B(1) • DATA_OUT_B(0) GND \bigcirc RX_LOCK_A 00 00 00 $\odot \bullet$ GND 00 $\circ \circ$ •• M&C TX M&C RX

The connector pinout shown above is used when demodulated data signals are routed to the output connector for direct *point-to-point* connection between two ComBlocks. See <u>Output selection</u>, REG37(2:0)). COM-1229 only. Not applicable for COM-1230.

••

••

JTAG TMS

GND

Test/Output Connector J9

JTAG TDO

JTAG TCK

The connector pinout shown above is used when a demodulated data streams is routed to the J9 connector (See <u>Output selection</u>, REG37(2:0)).

I/O Compatibility List

(not a	1 exhai	istive	list

T	\mathbf{O} \mathbf{I}
Input	Output
<u>COM-300x</u> RF receivers ¹	COM-7001 Turbo
	code decoder
COM-350x RF transceivers	<u>COM-1009</u>
	Convolutional
	decoder K=7
<u>COM-1002</u>	COM-8002 High-
BPSK/QPSK/OQPSK digital	speed data acquisition.
modulator (back to back)	256MB, 1Gbit/s, 50
	Msamples/s.
<u>COM-1028</u>	
FSK/MSK/GFSK/GMSK	
digital modulator (back to	
back)	
COM-1023 BER generator,	
AWGN generator	
COM-1024 Multipath	
simulator.	

Configuration Management

This specification is to be used in conjunction with VHDL software revision 1.

Comparison with Previous ComBlocks

Key Improvements with respect to COM-1001 BPSK/QPSK/OQPSK demodulator

- Includes digital anti-aliasing filter with variable decimation, thus alleviating the need for an external COM-1008.
- 32-bit numerically controlled oscillators for carrier and symbol timing (versus 24-bit)
- Significant increase in center frequency tuning range
- Automatic AFC (versus manual)
- Analog or Digital input signals (versus digital-only)
- Analog gain control output for fast response (versus slower pulse-width modulated gain control).
- User-programmable AGC response time.
- Multiple output interfaces: USB2.0, TCP-IP (COM-1230), synchronous serial (versus synchronous serial only)
- Built-in BER measurement, thus alleviating the need for an external COM-1005
- ComScope monitoring of key internal demodulator signals.

Key Improvements with respect to COM-1027 n-FSK demodulator

- Includes digital anti-aliasing filter with variable decimation, thus alleviating the need for an external COM-1008.
- 32-bit numerically controlled oscillators for carrier and symbol timing (versus 24-bit)
- Significant increase in center frequency tuning range

- Automatic AFC (versus manual)
- Analog or Digital input signals (versus digital-only)
- Analog gain control output for fast response (versus
- slower pulse-width modulated gain control).
- User-programmable AGC response time.
- Multiple output interfaces: USB2.0, TCP-IP (COM-1230), synchronous serial (versus synchronous serial only)
- Built-in BER measurement, thus alleviating the need for an external COM-1005
- ComScope monitoring of key internal demodulator signals.

ComBlock Ordering Information

COM-1229

Dual Demodulator: (n-FSK / n-PSK / QAM / APSK) with USB2.0 interface

COM-1230

Dual Demodulator: (n-FSK / n-PSK / QAM / APSK) with USB2.0 / TCP-IP interface

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com

¹ Requires soldering/crimping one wire for analog AGC.