

COM-1418 DIRECT SEQUENCE SPREAD-SPECTRUM DEMODULATOR 22 Mchip/s

Key Features

- Direct sequence spread-spectrum digital demodulator.
- Variable chip rate up to 22 Mchips/s.
- Spreading factor: 3 to 2047
- Spreading codes:
 - o Gold sequences
 - o Maximal length sequences
 - o Barker codes (length 11, 13)
 - o GPS C/A codes.
 - o Truncated codes.
- BPSK, QPSK selectable.
- Center frequency: +/- 10 MHz.
- Demodulation performances: within 1.5 dB from theory at threshold SNR of 5 dB.
- Sequential code search. False code-lock prevention.
- 4-bit soft-quantized demodulated bits to USB or synchronous output.
- Monitoring:
 - o Receiver lock
 - Carrier frequency error
 - o SNR
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

Electrical Interface

Demodulator Inputs / Outputs

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com1418.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Block Diagram

Input Interface	Definition
(J5)	
DATA_I_IN[11:0]	Modulated input signal, real axis.
	12-bit precision unsigned.
	Unused LSBs are pulled low.
	LVTTL 0 – 3.3V
DATA_Q_IN[11:0]	Modulated input signal, imaginary
	axis. Same format as DATA_I_IN.
SAMPLE_CLK_IN	Input signal sampling clock. One
	CLK-wide pulse. Read the input
	signal at the rising edge of CLK
	when $SAMPLE_CLK_IN = '1'$.
	Samples can be consecutive.
	Signal is pulled-up.
	LVTTL 0 – 3.3V
AGC1_OUT	Output. When this demodulator is
	connected directly to an analog
	receiver, it generates an analog
	signal to control the gain prior to
	A/D conversion. The purpose is to
	use the maximum dynamic range
	while preventing saturation at the
	A/D converter. 0 is the maximum
	gain, +3V is the minimum gain.
CLK_IN	Input reference clock for
	synchronous I/O. DATA_x_IN and
	SAMPLE_CLK_IN are read at the
	rising edge of CLK_IN. Maximum
	90 MHz.

Demodulated	Definition
Output (J8)	
DATA_I_OUT[3:0]	4-bit soft-quantized demodulated bits, real axis. Unsigned representation: 0000 for maximum amplitude '0', 1111 for maximum amplitude '1'. When the serial output mode is
	selected, I and Q samples are transmitted one after another on this interface. I is transmitted before Q.
DATA_Q_OUT[3:0]	4-bit soft-quantized demodulated bits, imaginary axis. Same format as DATA_I_OUT. When the serial output mode is selected, this interface is unused.
SAMPLE_CLK_OUT	Demodulated bit clock. One CLK-wide pulse. Read the output signal at the rising edge of CLK when SAMPLE_CLK_OUT = '1'.
RX_LOCK	'1' when the demodulator is locked, '0' otherwise. The lock status is based on the code lock.
CLK_OUT	40 MHz output reference clock.

Monitoring	Definition
Output (J9)	
DESPREAD_I[9:0]	Output I-channel signal after
	channel filtering, despreading,
	integrate and dump.
	10-bit precision unsigned.
	Can drive a COM-2001 dual D/A
	converter. LVTTL $0 - 3.3V$
DESPREAD_Q[9:0]	Q-channel. Same format as
	DESPREAD_I
DESPREAD_CLK	Output signal sampling clock. One
	CLK-wide pulse once per symbol.
	Read the output signal at the rising
	edge of CLK when
	DESPREAD_CLK = '1'.
CLK_P	90 MHz output clock (internal
	processing clock).

Power	4.75 – 5.25VDC. Terminal block. 250
Interface	mA typ.

Absolute Maximum Ratings

Supply voltage	-0.5V min, +6V	
	max	
40-pin connector inputs (when	-0.5V min,	
configured as LVTTL)	+3.6V max	

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB

or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1418 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1418 module to be configured, next click the Settings button to display the Settings window shown below.

🖥 COM1418 Direct Sequence Spread-Spectrum D... 🔀

Chip rate: 19900000
Spreading factor: 13
Code Type: Barker code 💉
Polynomial G1: 0000044 Hex
Polynomial G2: 000005F Hex
GPS satellite ID: 31
Nominal center frequency: 0 Hz
Spectrum inversion
AFC enable: Automatic AFC selection 🔽
Symbol decoding: BPSK 🔽
Code sweep period: 16 💌
✓ Software reset
Output: J8 connector I/Q serialized 💌
Apply Ok Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Definitions for the <u>Control registers</u> and <u>Status</u> registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

This module operates at a fixed internal clock rate \mathbf{f}_{clk} of 90 MHz.

Parameters	Configuration			
Chip rate	32-bit integer expressed as			
(fchip rate)	fchip rate $* 2^{32} / \mathbf{f}_{clk}$.			
	The maximum practical chip rate is			
	21.8 Mchips/s.			
	Example: 1 Mchip/s is configured as			
	0x 2D82D82			
	The maximum allowed error between			
	transmitted and received chip rate is +/-			
	100ppm.			
	REG0 = bits /-0 (LSB)			
	REGI = DIts 15 - 8			
	REG2 = DIIS 23 - 10 $REG2 = hit 21 - 24 (MSD)$			
0 1	$\frac{\text{REG3} = \text{bits } 31 - 24 \text{ (MSB)}}{1 - 24 \text{ (MSB)}}$			
Spreading	Spreading code period			
factor	Range: $3 - 2047$			
(Processing	• When using Gold codes or			
gain, or code	maximal length sequences, it is			
length))	important that this field be			
	consistent with the GI and G2			
	generator polynomials below.			
	Length is always in the form 2 -1,			
	Where n is an integer.			
	• When using Barker codes, the			
	spreading factor must be either 11 $(0-0P)$ or 12 $(0-0P)$			
	(UXUB) of 15 (UXUD).			
	 Iruncated codes can be generated 			
	other then the and length			
	PEC4 bits 7.0 (LSP)			
	PEG5 bits 7.0 (MSB)			
Code selection	1000000000000000000000000000000000000			
Code selection	001 = 0010 code 010 = Maximal longth sequence			
	010 – Maximai lengui sequence 011 – Barker code			
	100 - GPS C/A code			
	REG6 bits 2-0			
	KLOU 0113 2-0			

Gold sequence /	24-bit. Describes the taps in the
Maximal Length	linear feedback shift register 1:
Sequence generator	Bit 0 is the leftmost tap $(2^0$ in the
polynomial GI	polynomial). The largest non-zero
	bit is the polynomial order n. n
	determines the code period $2^n - 1$.
	Example:
	$G1 = 1 + x + x^4 + x^5 + x^6$ is
	represented as 0x000039
	This field is used only if Gold
	code or Maximal length sequences
	are selected.
	REG7 = bits 7 - 0
	REG8 = bits 15 - 8
	REG9 = bits 23 - 16
Gold code generator	24-bit. Describes the taps in the
polynomial G2	linear feedback shift register 2:
	Same format as G1 above.
	This field is used only if Gold
	codes are selected.
	$\mathbf{REG10} = \mathbf{bit} \ 7 - 0$
	REG11 = bit 15 - 8
	REG12 = bit 23 - 16
GPS satellite ID	GPS signals from different
	satellites are designated by a PRN
	signal number in the range $1 - 37$.
	This field is used only if GPS C/A
	codes are selected.
	REG10 = bit 5 - 0
Nominal carrier	Nominal center frequency.
center frequency	This value is subtracted from the
$(\mathbf{f_c})$	received signal actual center
	frequency.
	32-bit signed integer expressed as $32 + 232 = 10^{-32}$
	$f_c * 2^{32} / f_{clk}$
	REG13 = bits / -0 (LSB)
	REG14 = bits 15 - 8
	REG15 = bits 23 - 16
Comication	$\frac{\text{REG16} = \text{DIts } 31 - 24 \text{ (MSB)}}{1}$
loop gain	00 = nominal
loop gan	01 = 2x loop gain
	10 = 4x loop gain 11 = 8x loop gain
	$\frac{11 - 6x 100p \text{ gain}}{\text{DEC} 17 \text{ bits } 2.2}$
Spectrum inversion	KEU1 / DIIS 3-2
spectrum inversion	$\int \frac{d}{dt} dt = \int \frac{d}{dt} d$
	0 = 011
	$1 = 0\Pi$ $DEC 17 hit 5$
	KEUI / DIL J

AFC enable	The automatic frequency control circuit
	extendeds the frequency acquisition over
	100% of the symbol rate. When disabled
	$\pm 10\%$ of the symbol rate. when disabled,
	the receiver only means of carrier
	acquisition is the carrier frequency tracking
	loop which is inherently limited to
	approximately 1% of the symbol rate.
	The AFC should only be active during
	acquisition as it interferes with the Costas
	Loop operation.
	00 = automatic AFC selection.
	01 = force AFC disabled. Carrier tracking
	loon only
	10 - force AFC enabled
	11 - reserved (test)
	PEC17 bits 7.6
DDCV /	NEOT / DIIS /-0
DPSK /	00 = BPSK
decoding	01 = QPSK
uecounig	1x = test mode. Forced code acquisition.
	REG18 bits 3-2
Code	Duration (in bits) of the search for a given
sweep	code position during the code acquisition
period	phase. This allows one to tradeoff
N _{lock}	acquisition time versus threshold SNR.
	000 = 8
	001 = 16
	010 = 32
	010 = 52 011 = 64
	100 - 128
	100 - 120 101 - 256
	101 = 250
	110 = 512
	REG18 bits 6-4
Software	A one-time write of '1' forces all loops
reset	(code, carrier PLL, AFC) back into
	acquisition mode. This can be used to get
	out of a false lock condition. There is no
	need to clear this bit.
	REG18 bit 7.
Output	000 = J8 connector, 40 MHz clock. I/Q
selection	serialized when QPSK.
	001, J8 connector, 40 MHz clock, I/Q parallel
	010 = USB, 1-bit hard quantized, packed into 8-
	bit bytes, MSb first.
	011 = USB, 4-bit soft-quantized, packed into 8-
	bit bytes.
	REG19 bits 2-0
AGC	Users can to optimize AGC1 response time
response	while avoiding instabilities (depends on
time	external factors such as gain signal filtering
	at the RF front-end and chip rate). The
	AGC1_OUT analog gain control signal is
	updated as follows
	0 = every chip.
	1 = every 2 input chips
	2 - every 2 input chips, 2 - every 4 input chips
	2 - every 4 input ellips,
	$5 = \text{every } \delta$ input chips, etc
	20 = every 1 million input chips.
	22 = every 4 million input chips.
	Valid range 0 to 22.

The settings $16 = 0x10$ is stable with most ComBlock analog/RF front-end receiver modules.
REG20 bits 4-0

Status Registers

Digital	status	registers	are	read-only.	
Digitui	Status	registers	uiv	roug only.	

Parameters	Monitoring		
Carrier	Residual frequency offset with respect to		
frequency	the nominal carrier frequency.		
offset	32-bit signed integer expressed as		
	fcdelta * * 2^{32} / \mathbf{f}_{clk}		
	SREG0 = bits 7 - 0 (LSB)		
	SREG1 = bits 15 - 8		
	SREG2 = bits 23 - 16		
	SREG3 = bits 31 - 24 (MSB)		
AGC1 gain	Front-end AGC1 gain settings		
	8 bit unsigned		
	SREG4 bit 7-0.		
Carrier Lock	SREG5 bit 0		
status	0 = unlocked		
	1 = locked		
Code Lock	SREG5 bit 1		
status	0 = unlocked		
	1 = locked		
Despread	Measured signal power (averaged over		
signal power	N_{lock} bits). Compute the signal to noise		
S	ratio after despreading as S/N.		
	SREG6 = bits 7 - 0 (LSB)		
	SREG7 = bits 15 - 8		
	SREG8 = bits 22 - 16 (MSB)		
Noise power	Measured noise power within the		
Ν	unspread symbol bandwidth (averaged		
	over 512 symbols).		
	SREG9 = bits 7 - 0 (LSB)		
	SREG10 = bits 15 - 8		
	SREG11 = bits 22 - 16 (MSB)		

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1418 signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal	Buffer
		sampling	length
		rate	(samples)
1: Input I signal	8-bit	Input	512
	signed.	sampling	
		rate	
2: spread I-	8-bit	4	512
channel after root	signed	samples/chip	
3. Despread I-	8-bit	1 sample /	512
channel, center,	signed	symbol	512
after I&D	Signed	symbol	
4: code tracking	8-bit	1 sample /	512
phase correction	signed	symbol	
(accumulated)			
5: averaged	8-bit	Once per	512
despread signal	signed	code sweep	
power	e	period	
	D		D 00
Trace 2 signals	Format	Nominal	Buffer
		COMPLINAT	ionarn
		samping	(and a second second
1. Input O signal	9 h:4	rate	(samples)
1: Input Q signal	8-bit	rate Input	(samples) 512
1: Input Q signal	8-bit signed	rate Input sampling	(samples) 512
1: Input Q signal	8-bit signed	rate Input sampling rate	(samples) 512
1: Input Q signal 2: Code replica.	8-bit signed 8-bit	rate Input sampling rate 4 samples/chip	(samples) 512 512
1: Input Q signal 2: Code replica. Compare with spread input	8-bit signed 8-bit signed	sampling rate Input sampling rate 4 samples/chip	(samples) 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals	8-bit signed 8-bit signed	sampling Input sampling rate 4 samples/chip	(samples) 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end	8-bit signed 8-bit signed 8-bit	samping rate Input sampling rate 4 samples/chip AGC1	(samples) 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1	8-bit signed 8-bit signed 8-bit unsigned	samping rate Input sampling rate 4 samples/chip AGC1 update rate	(samples) 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking	8-bit signed 8-bit signed 8-bit unsigned 8-bit	samping rate Input sampling rate 4 samples/chip AGC1 update rate 4	(samples) 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase	8-bit signed 8-bit signed 8-bit 8-bit signed	Sampling rate Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip	(samples) 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise	8-bit signed 8-bit signed 8-bit unsigned 8-bit signed 8-bit	sampling rate Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per	(samples) 512 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise power (I only)	8-bit signed 8-bit signed 8-bit unsigned 8-bit signed 8-bit signed	sampling rate Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per code sweep	(samples) 512 512 512 512 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise power (I only)	8-bit signed 8-bit signed 8-bit unsigned 8-bit signed 8-bit	Sampling rate Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per code sweep period	(samples) 512 512 512 512 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise power (I only) Trigger Signal	8-bit signed 8-bit signed 8-bit signed 8-bit signed 8-bit signed	Sampling rate Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per code sweep period	(samples) 512 512 512 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise power (I only) Trigger Signal 1: Start of code	8-bit signed 8-bit signed 8-bit signed 8-bit signed 8-bit signed Format Binary	sampling Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per code sweep period	(samples) 512 512 512 512 512 512 512
1: Input Q signal 2: Code replica. Compare with spread input signals 3: front-end AGC1 4: Carrier tracking phase 5: averaged noise power (I only) Trigger Signal 1: Start of code replica	8-bit signed 8-bit signed 8-bit signed 8-bit signed 8-bit signed Format Binary	sampling Input sampling rate 4 samples/chip AGC1 update rate 4 samples/chip Once per code sweep period	(samples) 512 512 512 512 512 512 512 512 512

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk} processing clock as real-time sampling clock.

In particular, selecting the f_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope example, showing code lock with aligned: received spread signal after RRC filter (blue) vs code replica (red)

ComScope example: showing despread signal after integrate & dump.

Test Points (J6)

Test points are provided for easy access by an oscilloscope probe

Test	Definition
Point	
TP1	Carrier lock
TP2	Code lock (1) or scanning (0)
TP3	Recovered carrier
TP4	Recovered bit timing (i.e. start of code period).
	Useful to monitor code acquisition and
	tracking.
	Compare with modulator bit timing.
TP5	Spreading code replica
TP6	Spread I signal (MSB) (compare with
	spreading code replica above)
TP7	Demodulated data I-bit
TP8	Demodulated data Q-bit (when QPSK)
TP9	Start of spreading code replica (compare with
	start of spreading code at the modulator)
TP10	'1' when despread power is greater than
	detection (noise) threshold.

Implementation

Spreading codes

Spreading codes are pseudo random sequences which falls within the following categories:

- Gold sequences, for best autocorrelation properties
- Maximal length sequences
- Barker codes (length 11, 13)
- GPS C/A codes.

The same spreading code is used on both the inphase (I) and quadrature (Q) channels.

Gold sequences

Gold sequences are generated using two linear feedback shift registers LFSR1 and LFSR2 as illustrated below:

The code period is 2^{n} -1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its two generator polynominals. The highest order is n. The generator polynominals are user programmable.

A few commonly used Gold sequences are listed below:

n = 5 (length 31): G1 = 1 + x^{2} + x^{5} (0x000012) G2 = 1 + x + x^{2} + x^{4} + x^{5} (0x00001B)

n = 6 (length 63):G1 = 1 + x⁵ + x⁶ (0x000030)G2 = 1 + x + x⁴ + x⁵ + x⁶ (0x000039)

n = 7 (length 127): G1 = $1 + x^3 + x^7$ (0x000044) G2 = $1 + x + x^2 + x^3 + x^4 + x^5 + x^7$ (0x00005F)

 $n = 9 \ (length \ 511): \\ G1 = 1 + x^5 + x^9 \ (0x000110) \\ G2 = 1 + x^3 + x^5 + x^6 + x^9 \ (0x000134)$

n = 11 (length 2047): G1 = 1 + x^9 + x^{11} (0x000500) G2 = 1 + x^3 + x^6 + x^9 + x^{11} (0x000524)

 $\begin{array}{l} n=17 \ (length \ 131071); \\ G1=1+x^3+x^6+x^7+x^9+x^{10}+x^{14}+x^{16}+x^{17} \\ (0x01A364) \\ G2=1+x^9+x^{13}+x^{14}+x^{17} \ (0x013100) \end{array}$

Maximal length sequences

Maximal length sequences are generated using one linear feedback shift register LFSR1 as shown below:

The code period is 2^{n} -1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its generator polynominal. The highest order is n. The generator polynominal is user programmable.

A few commonly used maximal length sequences are listed below:

$$\begin{split} n &= 4 \text{ (length 15):} \\ &G1 &= 1 + x + x^4 \text{ (0x000009)} \\ n &= 5 \text{ (length 31):} \\ &G1 &= 1 + x^2 + x^5 \text{ (0x000012)} \\ n &= 6 \text{ (length 63):} \\ &G1 &= 1 + x + x^6 \text{ (0x000021)} \\ n &= 7 \text{ (length 127):} \\ &G1 &= 1 + x + x^7 \text{ (0x000041)} \\ n &= 8 \text{ (length 255):} \\ &G1 &= 1 + x^2 + x^3 + x^4 + x^8 \text{ (0x00008E)} \\ n &= 9 \text{ (length 511):} \\ &G1 &= 1 + x^4 + x^9 \text{ (0x000108)} \\ n &= 10 \text{ (length 1023):} \\ &G1 &= 1 + x^3 + x^{10} \text{ (0x000204)} \end{split}$$

Barker Codes

11 bit Barker code: 101 1011 1000, or 0x5B8 13 bit Barker code: 1 1111 0011 0101, or 0x1F35

The length (11 or 13) must be entered as spreading factor in REG4/5.

GPS C/A Codes

GPS C/A codes are modified Gold codes of length 1023 with generator polynomials: $G1 = 1 + x^3 + x^{10}$ $G2 = 1 + x^2 + x^3 + x^6 + x^8 + x^9 + x^{10}$

The G2 generator output is slightly modified so as to create a distinct code for each satellite. The G2 output is generated by summing two specific taps of the shift register. In the case of Satellite ID 1 for example, taps 2 and 6 are summed.

The G2 output taps are listed below

Satellite	G2	Satellite ID /	G2 output
ID /	output	GPS PRN	taps selection
GPS	taps	Signal	
PRN	selection	Number	
Signal			
Number			
1	2 xor 6	21	5 xor 8
2	3 xor 7	22	6 xor 9
3	4 xor 8	23	1 xor 3
4	5 xor 9	24	4 xor 6

5	1 xor 9	25	5 xor 7
6	2 xor 10	26	6 xor 8
7	1 xor 8	27	7 xor 9
8	2 xor 9	28	8 xor 10
9	3 xor 10	29	1 xor 6
10	2 xor 3	30	2 xor 7
11	3 xor 4	31	3 xor 8
12	5 xor 6	32	4 xor 9
13	6 xor 7	33	5 xor 10
14	7 xor 8	34	4 xor 10
15	8 xor 9	35	1 xor 7
16	9 xor 10	36	2 xor 8
17	1 xor 4	37	4 xor 10
18	2 xor 5		
19	3 xor 6		
20	4 xor 7		

Compliant with "Navstar GPS Space Segment / Navigation User Interfaces" specifications, ICD-GPS-200, Revision C. IRN-200C-004, 12 April 2000.

Data Rate

The data rate is determined by the chip rate, the processing gain (i.e. the spreading code period) and the modulation (BPSK/QPSK).

For a QPSK modulated signal, the data rate is 2 *fchip rate / processing gain

Filter Response

This module is configured at installation with a 40% rolloff filter. The filter rolloff can be selected among 20%, 25%, 35% and 40%. Changing the rolloff selection requires loading the firmware once using the ComBlock control center, then switching between up to four stored firmware versions (it takes 0.5 seconds).

All firmware versions can be downloaded from <u>www.comblock.com/download</u>.

COM-1418-A DSSS demodulator 20% rollol

- COM-1418-B DSSS demodulator 25% rolloff
- COM-1418-D DSSS demodulator 35% rolloff
- COM-1418-E DSSS demodulator 40% rolloff

To verify which firmware is currently installed, open the settings window and click on the "Advanced" button. The firmware option is listed at the bottom of the advanced settings window.

Filter Response (-A 20% rolloff)

Filter Response (-B 25% rolloff)

(filter response normalized for 4*symbol rate = 40 MHz)

Filter Response (-D 35% rolloff)

(filter response normalized for 4*symbol rate = 40 MHz)

Filter Response (-E 40% rolloff)

(filter response normalized for 4*symbol rate = 40 MHz)

I/Q constellation at the center of a spreading chip. Captured at the demodulator raised cosine square root filter output. QPSK. 40% rolloff. (digital modulatordemodulator back to back).

Frequency Tracking

The demodulator comprises both a phase locked loop (PLL) and an Automatic Frequency Control (AFC) loop. The AFC is to quickly detect and compensate for carrier frequency offsets, generally around the time of the code acquisition. The PLL is to detect and compensate for carrier phase errors.

The PLL is a second order loop. It can track the center frequency over a wide frequency range. The digital implementation of the Costas PLL has a small frequency acquisition range of about $\pm 1\%$ of the despread symbol rate.

The main purpose of the AFC is to increase the frequency acquisition window to about $\pm 10\%$ of the

despread symbol rate (typical). Once acquisition is achieved, the AFC is automatically disabled.

If the unknown received carrier frequency uncertainty is larger, the user must program some search algorithm using the nominal center frequency control registers (REG13 through 16).

For high data rates (> 100 Kbps), carrier phase noise is generally negligible. For lower data rates, it is may be necessary to adjust the carrier tracking loop gain as a tradeoff between carrier phase noise (originating at the modulator, up-converter, downconverter, etc) and thermal noise. To this effect, the user is given control of the loop gain over a range of x1, x2, x4 and x8.

The higher loop gain can also be used temporarily during acquisition to increase the frequency acquisition window from approximately 1% to 3% of the symbol rate. However, use of the AFC is preferred because of the faster acquisition time and larger acquisition range.

In some conditions, such as no input signal, the AFC and PLL loops can drift out and inhibit (re-)acquisition. It is possible for the user to reset the accumulators within the AFC and PLL loops by writing a '1' in REG18 bit7.

Code Tracking Loop

The code tracking loop is a coherent delay lock loop (DLL) of the 1^{st} order.

Code Acquisition

When code lock is not detected for N_{lock} consecutive bits, the receiver goes into code acquisition mode. The code replica is swept until code lock is detected (sequential code search). The rate at which the code replica is scanned is one chip every N_{lock} bits. The search stops as soon as code lock is detected. The parameter N_{lock} is user-defined.

Input Interpolation

This module provides fine selection of symbol rates, as long as the input sampling rate is between x4 and x8 the symbol rate. For higher ratios between input sampling rate / symbol rate, the COM-1008 variable decimation filter is recommended to prevent aliasing.

Front-End AGC1

The purpose of this AGC is to prevent saturation at the input signal A/D converters while making full use of the A/D converters dynamic range. Therefore, AGC1 reacts to the composite input signal which may comprise not only the useful signal but also adjacent channel interferers and noise. The principle of operations is outlined below:

- (a) The magnitude of the complex input samples is computed and continuously averaged over 1024 symbols.
- (b) The average magnitude is compared with a target magnitude threshold and the AGC gain is adjusted accordingly.
- (c) A 10-bit D/A converter generates the analog gain control signal RX_AGC1 for use by the external variable gain amplifiers. (pin J5/B13, left connector)

AGC1 principle (analog output)

Troubleshooting Checklist

Demodulator can't achieve lock even at high signalto-noise ratios:

• Make sure the modulator baseband I/Q signals do not saturate, as such saturation would strongly distort the modulation phase information. (this is a phase demodulator!)

Demodulator can demodulate BPSK but not QPSK:

• A spectrum inversion may have occurred in the RF transmission chain. If so, invert the spectrum inversion flag at the demodulator.

Timing

Clocks

The clock distribution scheme embodied in the COM-1418 is illustrated below.

The COM-1418 generates an internal 90 MHz processing clock based on the 60 MHz reference from the USB PHY.

The input signal is reclocked with this 90 MHz processing clock. The input signal synchronous clock CLK_IN can be as high as 90 MHz.

All I/O signals are synchronous with the rising edge of a reference clock (i.e. the signals are stable around the rising edge of the associated reference clock).

Input

The front dimensions (plug face) of a type 'B' USB receptacle are 12 mm wide by 11 mm tall (above the board.)

Schematics

The board schematics are available on-line at ComBlock.com/download/com_1400schematics.zip

Pinout

Input Connector J5

Output Connector J8

Output Connector J9

I/O Compatibility List

(not an exhaustive list)

Input	Output
COM-300x RF receivers	COM-1005 Bit Error Rate
	Measurement
COM-1008 variable	COM-7001 Turbo code
decimation	decoder
COM-1012/1019 spread	COM-1009 Convolutional
spectrum modulators	decoder K=7
(back to back)	
<u>COM-1023</u> BER	COM-1209 LDPC + long
generator, AWGN	BCH error correction
generator	decoder
COM-1024 Multipath	COM-5003 TCP-IP / USB
simulator.	Gateway

Configuration Management

This specification is to be used in conjunction with VHDL software revision 2.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1418 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

Comparison with Previous ComBlocks

Key Improvements with respect to COM-1018 Direct-Sequence Spead-Spectrum Demodulator

- False code-lock prevention.
- Support for truncated codes.
- USB 2.0 high-speed output to send demodulated bits to a host computer.
- Available despread-output, interface ready for D/A conversion (COM-2001 compatible)
- Maximum input sampling rate increased from 40 Msamples to 90 Msamples/s.
- Analog gain control for faster response (versus previous slower pulse-width modulated digital output)
- True automatic frequency control to increase the frequency acquisition range (to +/- 10% of the symbol rate) during acquisition.
- 32-bit numerically controlled oscillators for carrier and symbol timing (versus 24-bit)
- Significant increase in center frequency tuning range
- Added input bias removal

ComBlock Ordering Information

COM-1418 Direct sequence spread-spectrum demodulator. 22 Mchip/s.

MSS • 18221-A Flower Hill Way• Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com