Com Block

COM-1418 DIRECT SEQUENCE SPREAD-SPECTRUM DEMODULATOR 22 Mchip/s. VHDL SOURCE CODE OVERVIEW

Overview

The COM-1418 ComBlock Module comprises two pieces of software:

- VHDL code to run within the FPGA for all signal processing functions.
- C/Assembly code running within the Atmel AT90S8515 or ATMega8515L microprocessor for non application-specific monitoring and control functions.

The VHDL code interfaces to the monitoring and control functions by exchanging byte-wide registers on the Atmel microcontroller 8-bit data bus. The control and monitoring registers are defined in the specifications [1].

The Atmel microprocessor code is generic (i.e. non application specific), not user-programmable and functionally transparent to the user. It is thus not described here.

The COM-1418 VHDL code runs on the generic COM-1400 hardware platform. The schematics [2] for this platform are available in this CD.

Reference documents

[1] specifications: com1418.pdf

[2] hardware schematics: com_1400schematics.pdf

[3] VHDL source code in directory com-1418_*rev* \src

[4] Xilinx ISE project files com-1418_*rev* \com1418_ISE82.npl com-1418_*rev* \com1418_ISE91.npl

[5] .ucf constraint file com-1418_*rev* \src\com1418.ucf

[6] .mcs FPGA bit files com-1418_rev \com1418A_rev.mcs com-1418_rev \com1418B_rev.mcs com-1418_rev \com1418D_rev.mcs com-1418_rev \com1418E_rev.mcs

where *rev* is the current revision number.

Configuration Management

The current software revision *rev* is 0.

Configuration Options

In order to provide configuration flexibility without unduly increasing the hardware complexity, some features require generating different firmware versions. In particular, the channel filter (root raised cosine square root) rolloff can take four distinct values: 20%, 25%, 35% and 40%.

Four versions of the *raised_cos4x* root raised filters are included in the source code .src directory. To change the filter:

- (a) change the OPTION constant in the *com1418.vhd* file so that the resulting bit file can later be correctly identified.
- (b) Change the RAISED_COS4x statements in three places within the *demod.vhd* file: declaration and two instantiations.

VHDL development environment

The VHDL software was developed with Xilinx ISE 10.1 with XST as synthesis tool.

Target FPGA

The modem code is written in generic VHDL so that it can be ported to a variety of FPGAs. The modem code was developed on a Xilinx Spartan-3 XC3S400-4FT256 FPGA.

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2008 Issued 8/18/2008 The demodulator throughput is related primarily to the target FPGA technology. The VHDL code is designed for a maximum chip rate of ¹/₄ of the FPGA processing clock CLK_P. In other words, the processing is performed with 4 samples per chip. In practice, CLK_P is limited to about 90 MHz for a Xilinx Spartan-3 or 140 MHz for a Xilinx Virtex-4 (mostly because of the hardware multiplier latency). The CLK_P frequency is userselectable through a digital clock manager.

At the demodulator periphery, two interface components are hardware-specific: the USB and D/A converter interface. These drivers are written for specific external integrated circuits:

- *usb20.vhd*: interfaces with an external USB 2.0 PHY over a standard UTMI interface. (for example, the SMSC USB3250 IC).
- *dac.vhd*: Analog Devices AD5611D/A converter

Xilinx-specific code

The VHDL source code is written in generic VHDL with few Xilinx primitives. No Xilinx CORE is used. The Xilinx primitives are:

- IBUF
- IBUFG
- BUFG (global clocks)
- DCM (digital clock management, DLL)
- Various RAM block components (RAMB16_S16_S16, RAMB16_S9, RAMB16_S9_S9, RAMB4_S8_S8, etc.)

Clock / Timing

The software uses three different clocks:

- external clock CLK_IN which serves synchronous clock for the input data stream.
- a processing clock CLK_P used for most of the digital signal processing. This processing clock is generated by a DCM locked onto a 60 MHz reference from the external USB PHY (USB_CLK60G).
- A 40 MHz output clock CLK_OUTG, also generated by a DCM locked onto a 60 MHz reference from the external USB PHY.

Block Diagram

The hierarchical nature of the VHDL code reflects the block diagram below:

- *com1418.vhd* is the root program which includes the demodulator *dsss_demod*, the USB 2.0 driver *usb20*, the gain control DAC driver *dac* and ancillary functions such as monitoring and control functions (interface with microprocessor) and *comscope* to capture and display internal signals.
- the usb20.vhd driver allows one to connect the demodulator output to an external PC over a high-speed USB 2.0 link. An external USB PHY with standard UTMIcompliant interface is required.
- the main Direct-Sequence Spread-Spectrum functions are encapsulated within *dsss_demod*, including agc, channel filtering, despreading, carrier acquisition and tracking, code acquisition and tracking.
- the first processing step is removing any unwanted bias from the input signal in *bias_removal*.
- *acg10A* prevents saturation at the external A/D converter.
- entity *codegen* implements all spreading codes.
- the frequency translation is implemented within *digital_dc2*. The frequency translation is realized in the form of a complex vector rotation, using sine/cosine

lookup tables (*signed_sin_cos_tbl2*) and hardware multipliers.

- noise rejection (channel filtering) is implemented by two root raised cosine filters *raised_cos4x*, one for each complex axis.
- a conventional early-late gate delay lock loop is implemented in *code_tracking*. This entity includes only the error computation and the loop gain settings. Currently, a first-order loop is implemented. The 2nd order is commented out. The NCO and integrate & dump functions are part of the *dsss_demod* entity.
- a digital AGC *agc3* is used to normalize the despread signal and to condition the resulting signal in a variety of formats: 4bit unsigned (soft-quantization), 8-bit signed (for carrier tracking loop processing).
- most carrier acquisition, carrier tracking and AFC functions are implemented within the *carrier_tracking* entity. The actual carrier NCO is part of the *dsss_demod* entity.

Block Diagram

VHDL software hierarchy

-
📮 😇 com-1418_ISE82
En src\COM1401.txt
🖃 🛄 xc3s400-4ft256
🖃 🐂 COM1418 - Behavioral (src/com1418.vhd)
🔚 Inst_com1400_1 - com1400_1 - BEHAVIORAL (src/com1400_1.vhd)
🔚 Inst_com1400_2 - com1400_2 - BEHAVIORAL (src/com1400_2.vhd)
🖶 🔚 DEMOD_001 - DSSS_DEMOD - behavioral (src/DSSS_DEMOD/dsss_demod.vhd)
😑 🔚 AGC10A_001 - AGC10A - behavioral (src/DSSS_DEMOD/AGC10A.vhd)
🖻 🔚 POLAR_001 - POLAR3 - Behavior (src/DSSS_DEMOD/POLAR3.vhd)
🔀 BIAS_REMOVAL_001 - BIAS_REMOVAL - behavioral (src/DSSS_DEMOD/bias_removal.vhd)
😑 🔚 DIGITAL_DC2_001 - DIGITAL_DC2 - DIGITAL_DC_ARCH (src/DSSS_DEMOD/digital_dc2.vhd)
🗟 🔚 SIN_COS001 - SIGNED_SIN_COS_TBL2 - BEHAVIOR (src/DSSS_DEMOD/signed_sin_cos_tbl2.vhd)
🔀 CCF_NCO_001 - NCO32 - behavioral (src/DSSS_DEMOD/NCO32.vhd)
😑 🐚 RESAMPLING_001 - RESAMPLING2 - behavioral (src/DSSS_DEMOD/resampling2.vhd)
🔚 MULT18X18SIGNED_001 - MULT18X18SIGNED - BEHAVIOR (src/DSSS_DEMOD/mult18x18signed.vhd)
🔚 MULT18X18SIGNED_002 - MULT18X18SIGNED - BEHAVIOR (src/DSSS_DEMOD/mult18x18signed.vhd)
🔚 MULT18X18SIGNED_003 - MULT18X18SIGNED - BEHAVIOR (src/DSSS_DEMOD/mult18x18signed.vhd)
🔚 MULT18X18SIGNED_004 - MULT18X18SIGNED - BEHAVIOR (src/DSSS_DEMOD/mult18x18signed.vhd)
🔚 RAISED_COS_001 - RAISED_COS4C - RAISED_COS_arch (src/DSSS_DEMOD/raised_cos4c.vhd)
🔛 RAISED_COS_002 - RAISED_COS4C - RAISED_COS_arch (src/DSSS_DEMOD/raised_cos4c.vhd)
🔚 CODE_REPLICA_GEN_001 - CODEGEN - behavior (src/DSSS_DEMOD/codegen.vhd)
🖨 🐚 AGC3_001 - AGC3 - AGC3_ARCH (src/DSSS_DEMOD/agc3d.vhd)
MULT001 - SIGNED_MULT12X9_10_S - BEHAVIOR (src/DSSS_DEMOD/signed_mult12x9_10s.vhd)
🖙 🔛 UNSIGNED_MULT - M11x8U_A - BEHAVIOR (src/DSSS_DEMOD/m11x8u_a.vhd)
🗉 🛅 POLAR_001 - POLAR3 - Behavior (src/DSSS_DEMOD/POLAR3.vhd)
🛅 CARRIER_TRACKING_002 - CARRIER_TRACKING - behavioral (src/DSSS_DEMOD/carrier_tracking.vhd)
🔄 🔚 CTL_001 - CODE_TRACKING - CODE_TRACKING_ARCH (src/DSSS_DEMOD/code_tracking.vhd)
2 USB20_001 - USB20
DAC_002 - DAC - behavioral (src/DAC.vhd)
🖃 🔚 COMSCOPE_001 - COMSCOPE - behavioral (src/COMSCOPE.VHD)
TRACE_1_CAPTURE_8_BIT_WORDS_001 - CAPTURE_8_BIT_WORDS - behavioral (src/capture_8_bit_words.vhd) 🐨 🙀
TRACE_2_CAPTURE_8_BIT_WORDS_001 - CAPTURE_8_BIT_WORDS - behavioral (src/capture_8_bit_words.vhd)
· [*] COM1418.ucf (src/COM1418.ucf)

The code is stored with one, and only one, entity per file as shown above. The root program (highlighted) is *com1418.vhd*.

VHDL Simulation

Representative simulation screens for salient internal signals are captured and discussed below.

Signal Processing

In this section, we capture the key signals during VHDL simulation and plot them. The simulation is for backto-back modulator-demodulator in ideal conditions (noiseless, no frequency offset, stable gain). The plots refer to the internal VHDL signal names. The internal clock is set at 100 MHz for simplicity (actual clock is 90 MHz).

For this simulation, the DSSS modulator and demodulators are configured as 22 Mchips/s, Barker code, code length 13, PRBS-11 internal data source, BPSK modulation, noiseless, maximum amplitude, no frequency offset.

NCO_CHIP_RATE := x"3E93E93E" SPREADING_FACTOR := x"000D" CODE_SEL := "011" NCO_CENTER_FREQUENCY := x"00000000" SIGNAL_SCALING := "011111111" AWGN_SCALING := "000000000" MOD_CONTROL := x"0C93" DEMOD_CONTROL := x"2000"

Input baseband samples DSSS_DEMOD/DATA_x_IN Sampling rate: CLK_P

Baseband samples DSSS_DEMOD/DATA3_x after bias removal, frequency translation to baseband, x2 interpolation, decimation to 4 samples / chip and channel filtering in root raised cosine filter:

Baseband samples after phase/frequency compensation, root raised cosine filtering. The sampling rate is 4 samples / chip. Once the code tracking loop is locked, the amplitude at the center of chip is constant (amplitude

+500 or -500 approximately) as the combined transmit/receive filters do not theoretically cause any intersymbol interference. This is a plot of DEMOD/DATA3_I below:

After despreading with the code replica (center, early, late):

The despread signal is then subjected to low-pass filtering by an integrate and dump circuit synchronized with the symbol clock. The result is DEMOD/DATA10_I_ID:

The demodulated signal is then normalized in two steps:

- (a) a first coarse gain adjustment based on the spreading factor (by shifting DATA10_ID n times to the right, where 2ⁿ-1 is the code length).
- (b) the resulting DATA13_x complex sample is then converted to a phase DATA15_P by the *polar3* component which performs a simple cartesian to polar coordinates conversion. The resulting phase DATA15_P is used for extracting the demodulated data, the quality of the demodulated data (i.e. the distance to the nearest ideal phase constellation point) and the phase error for carrier tracking purposes.

Alternatively (both codes are included) DATA13_x undergoes fine gain adjustment through the AGC3 module. The 4-bit soft quantized output is named DATA6_I. The information bit is the most significant bit of DATA6_I. The lower three bits indicate the signal quality. Thus "0000" indicates a strong zero, "1111" a strong one, "0111" a weak zero, etc

Signal	Valu	322400ns	322500ns	322600ns	322700ns	322800ns	322900ns	323000ns	323100ns
DATA3_I	-420	000000000000000000000000000000000000000	36899996886	<u>}}}}30000000</u>	3999966666	0600000000	000000000000))))))	90000000000000000000000000000000000000
DATA10_I	-218	000000000000000000000000000000000000000	6006666666	<u>}}}}}(5))) </u>	3366386366	6006880000	0363333333	\$000000000	30000000000
DATA10_I_ID	2245	-22454			-22334			χ	
DATA10_I_SHI:	-1404	-1404	-2000		-1396			21/3/3/3/2	
DATA13_I	680	680			-702			_X	
DATA6_I	15	15	X						0
		1							

Below is an example of DATA13_x in the case of QPSK modulation and noiseless channel:

Code Acquisition

The code acquisition algorithm is a text-book sequential search: the code replica CODE3_D2 is shifted to the right by steps of $\frac{1}{2}$ chip every N symbol periods, where the dwell time N is specified in control register REG18(6:4). This simulation specified a dwell time of 8 symbols.

During the dwell time, the input signal DATA3_I is despread by the code replica CODE3_D2, resulting in DATA10_I. The despread signal is subsequently subject to an integrate and dump low-pass filter. The I&D output is DATA10_I_ID.

The salient signals are shown below while the demodulator is in code acquisition mode:

Signal	Value		7000ns	80	00ns	900	0ns	1000	Ons	11000	ns	12000:	ns 	13000n	.s
CODE3	'0'				•••••••••••••••••••••••••••••••••••••••			•••••••••••••••••••••••••••••••••••••••			·				
CODE3_D2	'0'		1			•••••••••••••••••••••••••••••••••••••••							··· } / //		
CODE3_D4	'1'	$1 \cdot \cdot$	Ŋ							···] [] []		···] [] []			
DATA3_I_D2[11]	'1'	10	\cdots							\mathcal{W}		\mathcal{W}		1.1	
DATA10_I[11]	'0'			FLIFLIF					UTUT		UTLAA	UTUR	UTUN	UTLAF	LEADER
DATA10_I_ID	21191	-109 -216	5 -1439	-2075	-1813	-2208	-2000	-4060	-2674	-2064	-2685	-1955	-2126	-2250	-2150 -
DATA10_Q_ID	21308	-115 -229	3 - 1527	-2172	-1839	-2254	-2035	-4222	-2764	-2128	-2800	-2046	-2201	-2327	-2251 -
DATA_EARLY_ID	13195	-161 -267	-1605	-2585	-2455	-2604	-2554	-4072	-2544	-1938	-2577	-1891	-2018	-2136	-2080 -
DATA_LATE_ID	17057	-144 -193	3 -2153	-1963	-1669	-2050	-1946	-4128	-2674	-2062	-2669	-1985	-2082	-2098	-2086 -
DATA14_I_ID	43 63	-485 -497	4 -4969	-4981	-4848	-5002	-4939	-6014	-5280	-4974	-5286	-4913	-4988	-5038	(-5002)-
DATA14_I_ID_ABS	43 63	4854 4974	4969	4981	4848	5002	4939	6014	5280	4974	5286	4913	4988	5038	5002 (5
DATA10_I_ID_ABS	21191	1097 2166	1439	2075	1813	2208	2000	4060	2674	2064	2685	1955	2126	2250	2150
DATA14_DIFF	246	-76 -63	-74	-64	(-65	-63	-65	-53	-61	-64	-61	-65	-63	-62	<u>-64</u>
DATA14_DIFF_ACC	1711	-277 -340	-414	(-478	-543	(-63	-128	-181	-242	-306	-367	-432	-495	-62	<u> </u>
DATA14_DIFF_ACC[24]	'0'														
CODE_LOCK	'1'														
CODE_START	'0'	· · · · <mark>·</mark> · · · · ·													
BIT_COUNTER	06	03 04	05) 06	07	00	01	02	03	04	05	06	07	00	<u>) 01 (</u>
SKIP_CHIP_CLK	'0'														·····

Code acquisition signals. Acquisition mode

Signal	Value	45	000ns	460)00ns	470	00ns	4800	0ns	49000	ns	50000:	ns 	51000n	s 	52000
CODE3	'0'			•••••											···	····
CODE3_D2	'0'						•••••••••••••••••••••••••••••••••••••••			•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		···] /] / [-11J-
CODE3_D4	'1'		·· ////		·· ////		•••••••••••••••••••••••••••••••••••••••					•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	···] [] []	
DATA3_I_D2[11]	' 1'	<u>ריין</u>		$[\cdots]$				··· 7.010			•••••••••••••••••••••••••••••••••••••••				···] [] []	
DATA10_I[11]	'0'														• • • • •	
DATA10_I_ID	21191	-820	-5988	3746	-959	-4144	3053	23571	22724	21799	20944	-21905	-22713	20878	-21930	X−210€
DATA10_Q_ID	21308	-4265	-6025	-6835	-4246	-4294	3352	-19686	-21667	21891	-19938	20853	22076	22779	20276	X-214C
DATA_EARLY_ID	13195	3462	386	-3036	3339	292	-3351	19259	15850	15237	17930	-15549	-16089	14612	-18462	<u>-1468</u>
DATA_LATE_ID	17057	-12086	-17386	15332	-12449	-15712	14183	15327	15836	15195	11706	-15339	-15281	13876	-12756	-1555
DATA14_I_ID	4363	-3340	-5156	3380	-3553	-4990	3017	5425	4968	4759	4674	-4481	-5063	4321	-5104	-5178
DATA14_I_ID_ABS	4363	3340	5156	3380	3553	4990	3017	5425	4968	4759	4674	4481	5063	4321	5104	5178
DATA10_I_ID_ABS	21191	820	5988	3746	959	4144	3053	23571	22724	21799	20944	21905	22713	20878	21930	21068
DATA14_DIFF	246	-53	χ -	·7	-54	-32	-11	2.63	259	248	236	255	256	243	244	229
DATA14_DIFF_ACC	1711	284	-291	298	-352	-32	-43	220	479	727	963	1218	1474	243	487	716
DATA14_DIFF_ACC[24]	'0'							•••••								
CODE_LOCK	'1'															
CODE_START	'0'															
BIT_COUNTER	06	Q 04	05	06	07	00	01	02	03	04	05	06	07	00	01	02
SKIP_CHIP_CLK	'0'															·····

Code acquisition signals. At the time of acquisition.

The last code replica phase adjustment (SKIP_CHIP_CLK) results in a near-perfect alignment of the code replica (CODE3_D2) and the received signal DATA3_I_D2 spreading code. The despread signal DATA10_I is no longer noise-like. Consequently, the energy in the DATA10_I_ID_ABS received signal after dispreading/integrate & dump/ absolute value is greater than the noise-based variable threshold 1.25*DATA14_I_ID_ABS. This difference is integrated over the 8-bit integration period before confirming code lock (reason: the algorithm has to be sturdy in presence of noise).

Carrier Acquisition & Tracking

When the input signal is despread with the correct code replica (correct epoch), the resulting signal follows a simple BPSK or QPSK constellation. The *polar3* component performs a Cartesian to polar coordinate conversion. The output DATA15_P is the detected carrier phase for each symbol. The *carrier_tracking* component then computes the carrier NCO control signal based on a second order Costas loop (when tracking) or an AFC loop (during carrier acquisition).

The demodulator response to a 45 deg initial phase offset between the modulator and demodulator is show below. Displayed is CCF_PHASE, the phase correction at the *digital_dc2* frequency translator component.

The carrier lock status is determined after computing the standard deviation of the phase error. When the rms phase error, averaged over a window of 512 symbols, is less than 25 deg, the demodulator is deemed to track the carrier and the CARRIER_LOCK flag is set.

Quality

For each demodulated symbol one computes the quality of the demodulated information. For BPSK or QPSK, the quality is tied to the distance (phase error that is) between the demodulated symbol and the nearest nominal symbol in the PSK constellation.

The symbol quality is appended to each demodulated information bit to form a 4-bit soft quantized output.

FPGA Occupancy

Design Summary					
Logic Utilization:					
Number of Slice Flip Flops:	3,973 out of	7,168	55%		
Number of 4 input LUTs:	4,680 out of	7,168	65%		
Logic Distribution:					
Number of occupied Slices:		3,582	out of	3,584	99%
Number of Slices containing on	ly related logic	: 3,5	61 out of	3,582	99%
Number of Slices containing un	related logic:		21 out of	3,582	1%
*See NOTES below for an expl	anation of the e	ffects	of unrela	ted logic	2
Total Number 4 input LUTs:	5,089 out of	7,168	70%		
Number used as logic:	4,680				
Number used as a route-thru:	343				
Number used as Shift registers:	66				
Number of bonded IOBs:	157 out of	173	90%		
IOB Flip Flops:	49				
IOB Latches:	7				
Number of Block RAMs:	10 out of	16	62%		
Number of MULT18X18s:	9 out of	16	56%		
Number of GCLKs:	6 out of	8	75%		
Number of DCMs:	2 out of	4	50%		

Total equivalent gate count for design: 782,097

Contact Information

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: info@comblock.com