Com Block

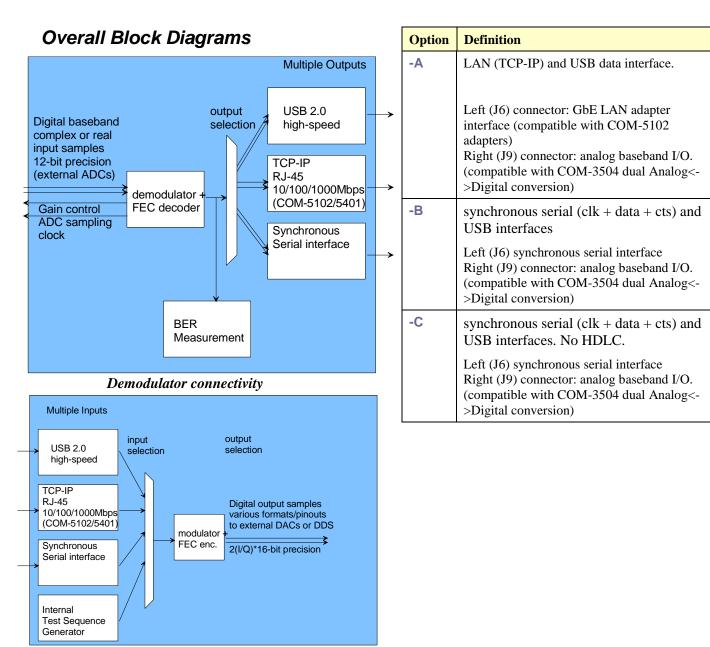
COM-1505 INTEGRATED PSK MODEM

Overview

The COM-1505 is a complete digital PSK modem, including PSK modulation, demodulation, convolutional error correction, V.35 scrambling, HDLC framing, TCP-IP network interface and USB 2.0 interface.

Key features and performance:

- PSK (BPSK, QPSK, OQPSK) modulation
- Continuous mode operation (i.e. Burst mode is not supported)
- Convolution error correction, rates 1/2, 2/3, 3/4, 5/6 and 7/8.
- Overall performance: 2.10⁻⁵ BER @ 4dB Eb/No for K=7 rate ¹/₂ FEC.
- Serial HDLC to transmit empty frames over the synchronous link when no payload data is available.
- V.35 scrambling to randomize the modulated data stream.
- Maximum encoded data rate of 25 Msymbols/s.
- User interfaces:
 - Synchronous serial with elastic buffer or
 - GbE TCP-IP server
 - USB 2.0 FS/HS
- Demodulator performance:
 - BER: < 0.5 dB implementation losses w.r.t. theory
 - Programmable frequency acquisition range.
 - Demodulator acquisition threshold (uncoded) Eb/No = 1dB
- Includes test signal generation and bit error rate measurement.

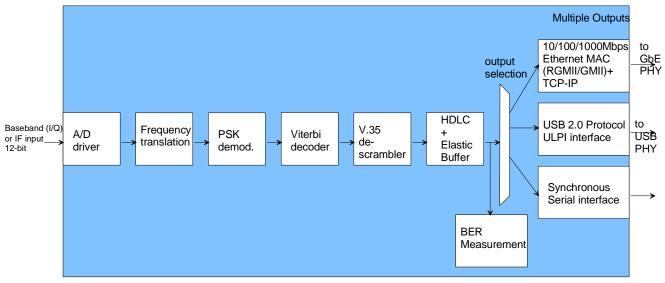

- Monitoring:
 - o Receiver lock
 - Carrier frequency error
 - o SNR
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1505.pdf</u>. These specifications are subject to change without notice.

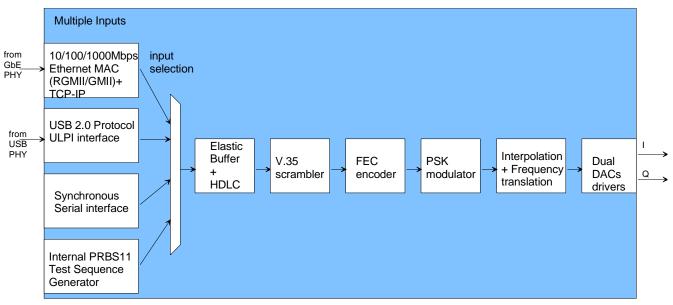
For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2013 Issued 4/25/2013

Modulator connectivity


Options

Several interface types are supported through multiple firmware options. All firmware versions can be downloaded from


http://www.comblock.com/download.html

Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 1.2 seconds

Implementation Block Diagram

Transmitter

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB, TCP-IP/LAN, Asynchronous serial (LVTTL),

or connections via adjacent ComBlocks.

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1505 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the \checkmark *Detect* button, next click to highlight the COM-1505 module to be configured, next click the Settings button to display the *Settings* window shown below.

COM1505 Integrated PSK Modem Basic Settings	
Control	
Modulation & FEC encoding	
Symbol rate (S/s) 7999992.4 [<60MS/s]	DAC Sampling Rate (Hz): 63999939
Modulation: QPSK 👻	Signal gain: 30000 [<65536]
Output center frequency: 0 Hz	Spectrum inversion 🛛 👽 Channel filter
FEC encoding Differential encoding	Convolutional FEC encoding: K=7, R=1/2, Intelsat 👻
V.35 scrambling VLC encoding	Input: LAN/TCP (8-bit parallel)
Demodulation & FEC decoding	
Nominal symbol rate (5/s): 8000000 [<50M5/s]	Modulation: QPSK 🗸
Input center frequency: 0 Hz	Frequency acquisition range: 62500 Hz
AGC response time: 8 [0-14]	☑ Internal AGC loop
FEC decoding 🔲 Differential decoding	Viterbi FEC decoding: K=7, R=1/2, Intelsat 👻
✓ V.35 descrambling	Input: 12-bit complex, right connector (J9) (COM-3504 compatible) 👻
Output: LAN/TCP-IP port 1024 (8-bit parallel)	
General	
external frequency reference	
Apply Ok	Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

All control registers are read/write. Definitions for the <u>Control registers</u> and <u>Status registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Transmitter		
Parameters	Configuration	
Input selection / format, test modes	Select the origin of the transmitter input data stream.	
	0 = high-speed USB, 8-bit parallel	
	1 = LAN/TCP-IP, port 1024 (through Ethernet adapter), 8-bit parallel	
	2 = 1-bit synchronous serial	
	3 = internal PRBS-11 test sequence	
	5 = unmodulated carrier	
	8-bit parallel input bytes are transmitted MSb first.	
	REG5(3:0)	

FEC convolutional encoder			
Parameters	rameters Configuration		
Constraint	0001 = (K = 7, R = 1/2, Intelsat)		
length K and	0010 = (K = 7, R=2/3, Intelsat)		
rate R	0011 = (K = 7, R = 3/4, Intelsat)		
	0100 = (K = 7, R = 5/6, Intelsat)		
	0100 = (K = 7, R = 7/8, Intelsat) 0101 = (K = 7, R = 7/8, Intelsat)		
	REG12(4:1)		
Differential			
Encoding	Differential encoding is useful in removing phase ambiguities at the PSK		
	demodulator, at the expense of doubling		
	the bit error rate.		
	When enabled, the differential decoding must be enabled at the receiving end.		
	There is no need to use the differential		
	encoding to remove phase ambiguities at		
	the PSK demodulator when the Viterbi		
	decoder and HDLC decoder are enabled.		
	0 = disabled		
	1 = enabled		
	REG12(5)		
Bypass FEC encoding	0 = encoding enabled		
encounig	1 = bypass		
	REG12(6)		
V.35/Intelsat IESS 308	0 = enabled		
scrambling	1 = bypass		
before FEC encoding	REG12(7)		
HDLC	0 = enabled		
encoding	• • • • • • • • • • • • • • • • • • • •		
	1 = bypass REG12(0)		
DCV Madul			
PSK Modula			
Parameters	Configuration		
Processing clock	Modulator processing clock. Also serves as DAC sampling clock.		
f _{clk_tx}	as DAC sampling clock.		
	20-bit unsigned integer expressed as		
	$f_{clk tx} * 2^{20} / 300 MHz.$		
	120 MHz maximum.		
	20 MHz recommended minimum		
	REG0 = bits 7-0 (LSB)		
	REG1 = bits 15 - 8 (MSB)		
	REG2(3:0) = bits 19 - 16 (MSB)		
	1002(0.0) = 01000 = 10(0000)		

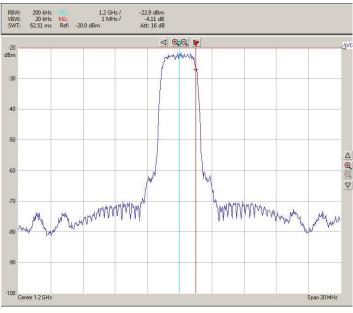
	· · · · · · · · · · · · · · · · · · ·
Internal/External frequency reference	0 = internal. Use the internal 60 MHz clock (from the USB PHY) as frequency reference. 1 = external. Use the 10 MHz clock externally supplied through the J7 SMA connector as frequency reference. REG2(7)
Symbol rate f _{symbol} rate tx	The modulator symbol rate is in the form $\mathbf{f}_{symbol rate tx} = \mathbf{f}_{clk_tx} / 2^{n}$ where n ranges from 1 (\mathbf{f}_{clk_tx} is twice the symbol rate) to 15 (symbol rate = $\mathbf{f}_{clk_tx} / 65536$). n is defined in REG3(3:0)
Modulation type	0 = BPSK 1 = QPSK 2 = OQPSK REG4(5:0)
Spectrum inversion	Invert Q bit. This is helpful in compensating any frequency spectrum inversion occurring in a subsequent RF frequency translation. 0 = off 1 = on
	REG4(6)
Channel filter enabled	0 = enable the spectrum shaping filters (root raised cosine, interpolation) 1 = bypass the spectrum shaping filters. (special use in applications
	when a root raised cosine filter is not used in the demodulator.) REG4(7)
Signal gain	Signal level. 16-bit unsigned integer. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend <u>checking for saturation at</u> <u>the D/A converter</u> when changing either the symbol rate or the signal gain. REG6 = bits 7-0 (LSB)
	REG7= bits 15-8 (MSB)

r	
Output Center frequency (f _{cout})	Frequency translation. 32-bit signed integer (2's complement representation) expressed as $f_{cout} * 2^{32} / f_{elk_tx}$ REG8 = bits 7-0 (LSB) REG9 = bits 15 - 8 REG10 = bits 23 - 16 REG11 = bits 31 - 23 (MSB) Option -C only Set the nominal input bit rate in order to generate a regular bit clock to the data source. Must be consistent with the modulator symbol rate, modulation type and FEC rate. Example: 2 Mbps : x051EB852
	$f_{input bit rate tx} * 2^{32} / f_{clk_rx}$ REG13 = bits 7-0 (LSB) REG14 = bits 15 - 8
	REG15 = bit 23 - 16 REG16 = bit 31 - 23 (MSB)
External transmitter gain control	When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range $0 - 3.3V$. REG17 = bits 7-0 (LSB) REG18(3:0) = bits 11-8
External transmitter controls	REG19(0): TX_ENB REG19(1) = RX_TXN

Receiver		
PSK Demodula	PSK Demodulator	
Parameters	Configuration	
Processing clock	The demodulator processing clock also serves as A/D converter sampling clock.	
	It can be generated within the FPGA or externally.	
	Code baseline $\mathbf{f}_{clk_rx} = 100 \text{ MHz}$	
	Note: when using IF undersampling, a dedicated oscillator is recommended as the FPGA-	
	generated clock may show excessive jitter (which translates into phase noise).	
Nominal symbol rate	The demodulator nominal symbol rate is in the form $\mathbf{f}_{symbol rate rx} * 2^{32}$ /	
f _{symbol} rate rx	f _{clk_rx} REG25 = bits 7-0 (LSB)	
	$REG26 = bits \ 15 - 8$	
	REG27 = bit 23 - 16	
	REG28 = bit 31 – 23 (MSB)	
Nominal Center frequency (\mathbf{f}_{c_rx})	Expected center frequency of the received signal. 32-bit signed integer (2's complement representation) expressed as	
	$\mathbf{f_{c_rx}} * 2^{32} / \mathbf{f_{clk_rx}}$	
	In the case of IF undersampling, the residual intermediate frequency is removed here. For example, in the case of a 125 MHz IF signal sampled at 100 Msamples/s, the 25 MHz residual frequency is removed here by entering 0x40000000.	
	REG29 = bit 7-0 (LSB)	
	REG30 = bit 15 - 8	
	REG31 = bit 23 – 16	
	REG32 = bit 31 – 23 (MSB)	
Modulation type	0 = BPSK	
	1 = QPSK	
	2 = OQPSK	
	REG33(5:0)	

clock	Spectrum inversion	Invert Q bit. This is helpful in compensating any frequency spectrum inversion occurring during RF frequency translations. 0 = off 1 = on REG33(6)
IHz mpling,	High SNR	To minimize the false lock probability at high SNR, set this bit to '1' when Eb/No is likely to exceed 10dB. To emphasize operation at very low Eb/No, set this bit to '0' REG33(7)
$\frac{\text{accessive}}{\text{mbol}}$	Frequency acquisition range (scan)	The demodulator natural frequency acquisition range is around 1% of the symbol range (depending on modulation, SNR). The frequency acquisition range can be extended by frequency scanning. Scanning steps are spaced ($\mathbf{f}_{symbol rate rx}$ /128) apart. The user can thus trade-off acquisition time versus frequency acquisition range by specifying the number of scanning steps here.
f the l integer on)		For example, 16 steps yield a frequency acquisition range of +/-(f _{symbol rate rx} *12.5%) REG24
ng, the icy is in the sampled Hz d here	AGC response time	Users can to optimize the AGC response time while avoiding instabilities (depends on external factors such as gain signal filtering at the RF front-end and symbol rate). The response time is approximately: 0 = 8 symbols, 1 = 16 symbols, 2 = 32 symbols, 3 = 64 symbols, etc 10 = every thousand symbols. Valid range 0 to 14. REG34(4:0)
	AGC internal / external	0 = internal AGC 1 = external AGC When selecting internal AGC mode, the user is responsible for avoiding saturation at or prior to the A/D converter.
		The internal AGC maximum gain is 256 in amplitude (48 dB in power). Therefore, it is recommended to keep the input samples amplitude between
		7

Input selection	 maximum and maximum/256. In the input dynamic range is larger, please adjust the INTERNAL_AGC_005 process within <i>RECEIVER1.vhd</i>. REG34(7) 0 = digital real 12-bit unsigned samples, right connector, COM-3504 transceiver. Use in the case of IF input signal. 1 = digital complex 2*12-bit unsigned samples, right connector, COM-3504 transceiver Use in case of baseband (near-zero center frequency) input signal. 7 = internal loopback mode, from modulator. REG35(2:0)
Viterbi FEC d	, ,
Parameters	Configuration
Constraint length K and rate R	0001 = (K = 7, R=1/2, Intelsat) $0010 = (K = 7, R=2/3, Intelsat)$ $0011 = (K = 7, R=3/4, Intelsat)$ $0100 = (K = 7, R=5/6, Intelsat)$ $0101 = (K = 7, R=7/8, Intelsat)$ $REG37(4:1)$
Differential Decoding	0 = disabled $1 = enabled$ $REG37(5)$
Bypass FEC decoding	0 = decoding enabled 1 = bypass REG37(6)
V.35/Intelsat IESS 308 descrambling after FEC decoding	0 = enabled 1 = bypass REG37(7)
HDLC decoding	0 = enabled 1 = bypass REG37(0)
Output selection	0 = high-speed USB, 8-bit parallel 1 = LAN/TCP-IP, port 1024 (through Ethernet adapter), 8-bit parallel 2 = 1-bit synchronous serial 3 = exclusively to the BER measurement REG36(2:0)
Enable test points	Enable (1)/Disable (0) test points on J6 connector REG36(7)


Network Interface		
Parameters	Configuration	
IP address (when connected to Gbit Ethernet PHY like COM-5102, COM-5104)	4-byte IPv4 address. Example : 0x AC 10 01 80 designates address 172.16.1.128 The new address becomes effective immediately (no need to reset the ComBlock). REG41: MSB REG42 REG43 REG43 REG44: LSB	

(Re-)Writing to the last control register REG44 is recommended after a configuration change to enact the change.

Configuration example

Modulator:

2 Msymbols/s modulation, BPSK, convolutional encoding K=7 R=1/2, PRBS-11 test sequence, baseband (0Hz) complex (I/Q) modulated output signal.

Typical RF output spectrum (after D/A conversion and direct RF modulation)

Status Registers

Digital status registers are read-only.

PSK/QAM/APSK Demodulator Monitoring			
Parameters	Monitoring		
Front-end AGC	8-bit unsigned value prior to DAC conversion to RX_AGC1. Inverted scale: 0 is for the maximum gain. SREG10		
Carrier frequency offset (fcdelta) Carrier	Residual frequency offset with respect to the nominal carrier frequency. 24-bit signed integer (2's complement) expressed as fcdelta $* 2^{24} / f_{clk_rx}$. SREG11 = LSB SREG12 SREG13 = MSB Lock is declared if the standard		
tracking loop lock status	deviation of the phase error is less than 25deg rms. 0 = unlocked 1 = locked SREG14(0)		
Inverse SNR	A measure of noise over signal power. 0 represents a noiseless signal. Valid only when demodulator is locked. SREG15		
Viterbi FEC de	coder monitoring		
Parameters	Monitoring		
Synchronized	(FEC_DEC_LOCK_STATUS variable) Solid '1' when the Viterbi decoder is locked. '0' or toggling when unlocked. SREG14(1)		
Decoder built- in BER	The Viterbi decoder computes the BER		
	on the received (encoded) data stream irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window (unless modified in <i>com1509pkg.vhd</i>). SREG16 = bits 7 - 0 (LSB) SREG17 = bits 15 - 8 SREG18 = bits 23 - 16 (MSB)		
HDLC decoder	irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window (unless modified in com1509pkg.vhd). SREG16 = bits 7 – 0 (LSB) SREG17 = bits 15 – 8 SREG18 = bits 23 – 16 (MSB)		
HDLC decoder Parameters	irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window (unless modified in com1509pkg.vhd). SREG16 = bits 7 – 0 (LSB) SREG17 = bits 15 – 8 SREG18 = bits 23 – 16 (MSB)		
	irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window (unless modified in com1509pkg.vhd). SREG16 = bits 7 - 0 (LSB) SREG17 = bits 15 - 8 SREG18 = bits 23 - 16 (MSB) monitoring		
Parameters Cumulative number of valid bits at HDLC	irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window (unless modified in <i>com1509pkg.vhd</i>). SREG16 = bits 7 – 0 (LSB) SREG17 = bits 15 – 8 SREG18 = bits 23 – 16 (MSB) monitoring SREG19: LSB SREG20: SREG20: SREG21: SREG22: MSB		

Bit Errors	Bit errors can be counted when a PRBS- 11 test sequence is transmitted.	
	Number of bit errors in a 1,000,000 bit window. 32 bit unsigned. SREG23: error_count[7:0] (LSB) SREG24: error_count[15:8]	
	SREG25: error_count[23:16]	
	SREG26: error_count[31:24] (MSB)	
	The bit errors counter is updated once every periodic measurement window. Reading the value will not reset the counter.	
BER Synchronization	0 = not synchronized. 2047-bit pattern is not detected.	
status	1 = synchronized	
	SREG27(0)	
TCP-IP Conne	ction Monitoring	
Parameters	Monitoring	
TCP-IP	Bit 0 = port 1028 (M&C) connected	
connection on	Bit $1 = \text{port } 1024 \text{ (data) connected}$	
port 1024	1 for connected, 0 otherwise	
(data stream)	SREG28(1:0)	
LAN PHY ID	Expect 0x22 when the PHY IC is Micrel KSZ9021.	
	SREG29(LSB)	
MAC address	Unique 48-bit hardware address (802.3). In the form SREG30:SREG31:SREG32::SREG35	
	Since the MAC address is unique, it can also be used as a unique identifier in a radio network with many nodes.	

Note: multi-words status registers such as frequency offset or BER, are latched upon reading status register SREG10.

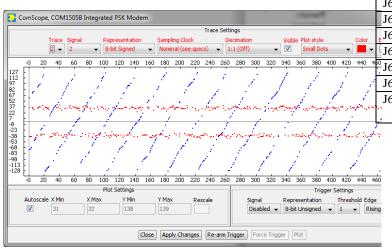
Troubleshooting checklist

1. Place modem in loopback mode (REG35 = 0x07) while sending a PRBS-11 test sequence (REG5 = 0x03). Be sure to direct the demodulated bit stream to the BER measurement (REG36 = 0x03).

Check the status registers for

- a. Demodulator and Viterbi decoder are locked: SREG14 = 0x03
- b. No Viterbi decoder errors: SREG16/17/18 = 0
- c. BER measurement is synchronized: SREG27 = 0x01
- d. No BER errors: SREG23/24/25/26 = 0
- e. Bits are being received at the HDLC decoder output: SREG19/20/21/22 counter keeps increasing at a rate consistent with the modulation rate.

ComScope Monitoring


Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1505 signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal sampling	Buffer length
		rate	(samples)
1: Input signal (I-	8-bit	Input	512
channel) after AGC,	signed	sampling	
frequency translation, CIC decimation		rate/R	
2: phase after	8-bit	1 sample /	512
scanning and before	signed	symbol	
final carrier tracking loop			
3: Magnitude after	8-bit	1 sample /	512
final AGC	signed	symbol	
4: symbol timing	8-bit	1 sample /	512
tracking correction	unsigned	symbol	
(accumulated) Trace 2 signals	Format	Nominal	Buffer
Trace 2 signals	ronnat	sampling	length
		rate	(samples)
1: Input signal (Q-	8-bit	Input	512
channel) after AGC,	signed	sampling	
frequency translation, CIC decimation		rate/R	
2: Demodulated I	8-bit	1 sample /	512
channel	signed	symbol	
3: Input signal I-	8-bit	Input	512
channel	signed	sampling	
	0.1.1	rate	510
4: PLL Carrier tracking phase	8-bit	Input	512
correction	signed	sampling rate	
(accumulated)			
Trace 3 signals	Format	Nominal	Buffer
		sampling	length
1: Input signal Q-	8-bit	rate Input	(samples)
channel	signed	sampling	512
	Signed	rate	
2: final AGC gain	8-bit	variable	512
	signed		
Trigger Signal	Format		
N/A			

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the $\mathbf{f}_{\text{clk_rx}}$ processing clock as real-time sampling clock.

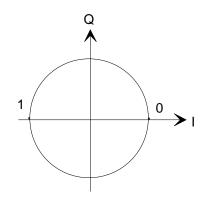
In particular, selecting the $\mathbf{f}_{clk,rx}$ processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope example: showing demodulated Ichannel (red) and received phase after scanning/before tracking (blue)

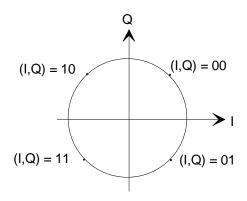
Digital Test Points

Enabled if REG36(7) = '1', high-impedance otherwise.


Test	Definition
Point	
J6/A29	Carrier locked
J6/A30	Recovered carrier: scanner
J6/A31	Recovered carrier: PLL
_J6/A32	Overall demodulator lock (STATE=2)
J6/A33	Phase ambiguity removal step (pulse)
_E J6/A34	Reset demodulator in false lock (pulse)
[J6/A35	Viterbi decoder locked
⁶⁰ J6/A36	BER tester synchronized
J6/A37	Byte error detected by BER tester
J6/A38	BER tester detecting periodic start of PRBS-
· ·	11 test sequence

Operation

Constellation: Symbol Mapping


The packing of serial data stream into symbols is done with the Most Significant bit first.

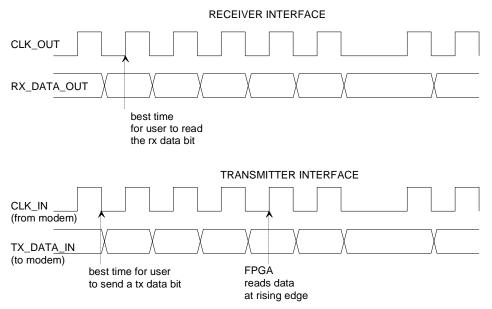
BPSK

Gray encoding.



Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in JP1 position 2-3 prior and during power-up. This prevents the FPGA configuration and restore communication. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.


I/Os

1-bit synchronous serial (-B option)

In the transmit direction, the user provides both clock (CLK_IN) and data (TX_DATA_IN). The user should always check the "Clear-To-Send" CTS_OUT flag before sending additional data bits to the modulator. As option **–B** includes HDLC, the user is allowed not to transmit data. When so, the modem will send empty HDLC frames.

1-bit synchronous serial (-C option)

In the transmit direction, the user provides serial data (TX_DATA_IN), preferably at the falling edge of the modem-supplied CLK_IN. The TX_DATA_IN is read at the rising edge of CLK_IN. The user MUST provide data, otherwise an underflow condition will occur. Option –C is for continuous-mode operation. No gap in data

transmission is allowed.

TCP-IP (-A option)

The transmit and receive data streams can also be transferred over a TCP-IP network connection. This requires an additional Ethernet PHY with standard RGMII or GMII interface (a COM-5102 plug-in Ethernet adapter for example).

In this case, the modem acts as a TCP server, waiting for connection from a remote client at port 1024. A unique IP address and a unique MAC address must be assigned to the modem (see control registers REG41 through REG50).

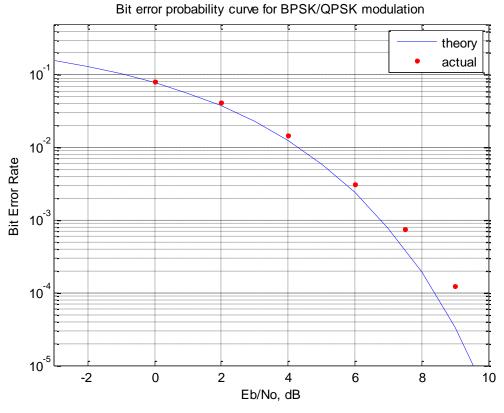
The TCP-IP protocol guarantees that no overflow will occur in the user to modem direction. The built-in flowcontrol mechanism of the TCP-IP will prevent the user application from writing more data than the modem can handle for the specified data rate.

In the receiver to user direction however, it is the user's responsibility to read data as fast as possible to prevent an overflow condition from occurring at the receiver.

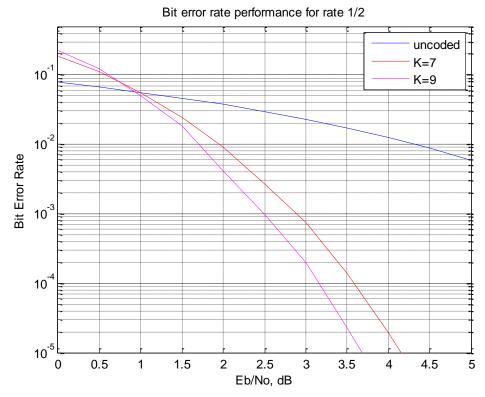
The TCP bytes are sent/received serially, most-significant bit first.

The modem monitoring and control information can also be sent over the same physical link, using the TCP server at port 1028.

More information regarding the built-in 10/100/1000 Mbps Ethernet MAC and the TCP server can be found here:


www.comblock.com/download/com5401soft.pdf www.comblock.com/download/com5402soft.pdf

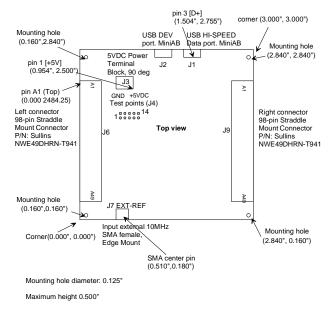
USB


Data streams can also be transmitted over a USB 2.0 cable, together with monitoring and control information. This modem acts as a USB device. See http://comblock.com/download/USB20_UserManual.pdf for details.

More information regarding the built-in USB 2.0 Serial Interface Engine (SIE) can be found here: <u>http://comblock.com/download/USB2soft.pdf</u>

Performance

BER performance, demodulator only (no FEC)

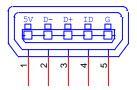

BER performance, FEC only (no demodulator)

Absolute Maximum Ratings

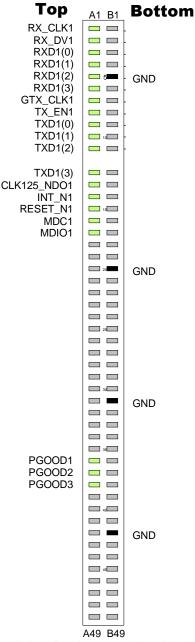
Supply voltage	-0.5V min, +6V
	max
40-pin connector inputs (when	-0.5V min,
configured as LVTTL)	+3.6V max

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Mechanical Interface

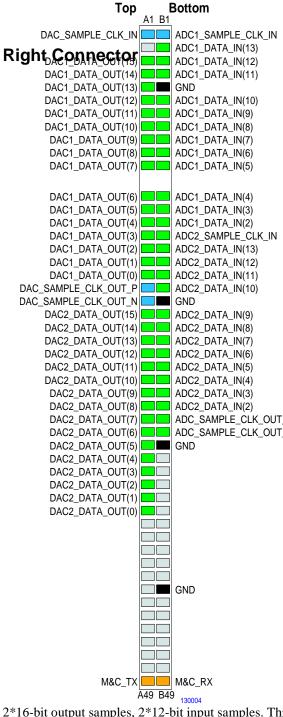

Schematics

The board schematics are available on-line at http://comblock.com/download/com_1500schematics.pdf


Pinout

USB

Both USB ports are equipped with mini type AB connectors. (G = GND). In both cases, the COM-1524 acts as a USB device.


Left Connector J6

This interface is compatible with the COM-5102/COM- 5401

10/100/1000 Mbps Ethernet PHY

. (-A firmware)

2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM-3504 dual Analog<->Digital Conversions.

I/O Compatibility List

(not an exhaustive list)

Left connector (J6)		
<u>COM-5102</u> Gigabit Ethernet + HDMI interface		
COM-5401 4-port 10/100/1000 Mbps Ethernet		
Transceivers (limited to one port)		
COM-1500 FPGA + DDR2 SODIMM socket + ARM		
development platform		
Right connector (J9)		
COM-3504 Dual Analog <-> Digital Conversions		
COM-1524 channel emulator		
COM-1500 FPGA + DDR2 SODIMM socket + ARM		
development platform		

Configuration Management

This specification is to be used in conjunction with VHDL software revision 6.

ComBlock Ordering Information

COM-1505 Integrated PSK modem

MSS • 18221-A Flower Hill Way• Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com