
COM-1510SOFT
Block mode convolutional FEC codec
VHDL source code overview / IP core

Overview

The COM-1510SOFT is a convolutional FEC
codec, including encoder and Viterbi block decoder.

This codec operates in block mode, whereby a finite
length frame is encoded and decoded. The error
correction configuration (K, rate, polynomials,
puncturing) can be changed dynamically on a
frame-by-frame basis.

The code can be configured for either high speed (1
encoded bit per clock period) or small footprint.

When configured in parallel mode, the maximum
throughput is typically in the range 100 – 250
Mbits/s depending on the FPGA technology.

The entire VHDL source code is deliverable.

Key features and performance:

 Flexible dynamic (i.e. at runtime) user-
selected configuration:

o Constraint length K=5,6,7,9

o Number of parity bits 2 to 5

o Gx generator polynomial from a
preset list

o Puncturing pattern from a preset
list

 Configuration prior to VHL synthesis
control the maximum occupancy:

o Hard (1-bit) or soft(4 to 8-bit)
decision decoding

o Maximum constraint length K_max

o Maximum number of parity bits

o Traceback length

 Support for erasures (code puncturing)

 Reduced decoder latency: K*25 bits

 Provided with IP core:

o VHDL source code

o Matlab .m file to generate stimulus
files for VHDL simulation at
various signal to noise ratios

o VHDL testbench with PRBS11
sequence generator and bit error
rate measurement.

Target Hardware
The code is written in generic standard VHDL so as
to be ported to a variety of FPGAs. It was compiled
and simulated using Xilinx ISE 14 and Xilinx
Vivado v2014.2 tools.

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2016 Issued 7/22/2016

http://www.ComBlock.com/

Configuration
Synthesis-time configuration parameters

The following constants are user-defined in the
generic section of the encoder and decoder
components prior to synthesis. These parameters
generally define the size of the decoder
embodiement.

Parameters Configuration

Decoder-only

Maximum frame payload size
FRAME_SIZE_MAX_LOG2

Log2(maximum frame
payload size in bits),
rounded up.

Parallel vs Sequential
decoding N_PAR_LOG2

Parallel vs sequential
decoding. Tradeoff
size versus speed.
Log2(number of
parallel ACS circuits),
between 0 (fully
sequential) and
(K_MAX-1) (fully
parallel)

Maximum constraint length
K_MAX

Valid values are 5,6,7,9

Maximum number of parity
bits N_PARITY_BITS_MAX

Valid range 2 to 5

Number of Soft-decision
decoding bits NBSD

Valid range 4 to 8 bits

Hard/Soft-decision decoding
HARD_SOFTN_DECISION

‘1’ for 1-bit width input
’0’ for NBSD-bit width
input

Traceback depth TB_DEPTH Typically 6* K_MAX
for non-punctured,
12* K_MAX for
punctured codes.

Valid range 30 to 120

Input Bit Error Rate
measurement window
BER_WINDOW_LENGTH

Maximum value 224 -1

Run-time configuration parameters

The user can set and modify the following controls
at run-time through the top level component
interface:

Parameters Configuration

Encoder

Code selection Select one of the preset codes
CODE_SEL dynamically on a frame-
by-frame basis. The code selection is
enacted at the input start of frame
(SOF_IN)

Enable tail-
biting

0 (disable) / 1 (enable)

CONTROL(0)

Extend input
frame with (K-
1) zeros

0 (disable) / 1 (enable)

CONTROL(1)

Decoder

Code selection Select one of the preset codes
CODE_SEL dynamically on a frame-
by-frame basis. The code selection is
enacted at the input start of frame
(SOF_IN)

Enable tail-
biting

0 (disable) / 1 (enable)

TAIL_BITING

Frame size Decoded frame size
FRAME_OUT_SIZE expressed as
number of decoded bits.

Limitations

1. The code does not support GMR-1 3G
specification [1] for repetition.

2. The frame payload maximum size is set by
FRAME_SIZE_MAX_LOG2. For example
12 for a maximum payload size of 4095
bits.

3. When tail-biting and puncturing are both
enabled, the frame size must be an integer
multiple of the puncturing period (for
example 3 for code 1, 5 for code 2).

4. When tail-biting is enabled, the product
3* TB_DEPTH* N_PARITY_BITS_MAX
must be less than the frame payload
maximum size.

Codes

A number of convolutional codes compatible with
GMR-1 3G standard [1] are preset in the VHDL
source code. Codes are defined by their generator
polynomials Gx, constraint length K and puncturing
patterns.

0 marks an erasure during puncturing.

GMR-1 3G [1]

Code
number

Configuration

0 K=5

Rate ½ convolutional code

No puncturing

1 K=5

Rate ½ convolutional code

2

Rate ¾ after puncturing

2 K=5

Rate ½ convolutional code

Rate 5/8 after puncturing

10 K=5

Rate 1/3 convolutional code

No puncturing

20 K=5

Rate 1/4 convolutional code

No puncturing

30 K=5

Rate 1/5 convolutional code

No puncturing

60 K=6

Rate 1/4 convolutional code

No puncturing

64 K=7

Rate 1/2 convolutional code

No puncturing

96 K=9

Rate 1/2 convolutional code

No puncturing

160 K=9

Rate 1/4 convolutional code

No puncturing

192 K=9

Rate 1/3 convolutional code

No puncturing

Custom codes

Adding or removing codes from the list of preset
codes is quite simple. Each code is defined by:

a) generator polynomials. For example
G0(x) = 1 + x + x2 + x4 is represented by the
vector G0 <= “000010111”;

b) constraint length K

c) number of parity bits (number of generator
polynomials) N_PARITY_BITS

d) N_PUNCTURING_PHASES: number of
phases (horizontal X axis) in the puncturing
matrix.

These parameters are defined in the
CODE_SEL_001 processes in both encoder and
decoder. Note that the generator polynomial
definition in the decoder is a flipped version as the
input bit enters the register through the MSb, unlike
the encoder.

In addition to the above parameters, one must also
define:

e) the puncturing pattern for each code in the
function f_puncturing_pattern()

f) the punctured encoding period in the
function f_punctured_encoding_period()

See the commented source code for details.

Sequential vs Parallel decoding
It is possible to trade-off speed versus size by
instantiating either a parallel decoder (all 2K-1 states
computed in parallel) or a sequential decoder. The
ratio of speed and size is roughly 2K-1.

Hard/Soft-decision decoding
It is possible to trade-off implementation
complexity versus decoding performance by
controlling the precision of the encoded input
samples. For example, it may be advisable to use
hard-decision (1-bit) decoding to keep a K=9 Rate
¼ decoder to a practical size.

For small constraint length (K=5), higher-
performance 4-bit soft-decision is recommended as
the implementation size is fairly small.

3

Monitoring

Bit Error Rate Measurement
The decoder estimates the bit error rate on the
encoded bit stream by comparing the actual
received bit stream with an estimate of the
transmitted bit stream. This estimate is generated by
re-encoding the nearly error-free decoded bit
stream.

The algorithm is based on the proposition that the
decoded bit stream is nearly error-free. If the
decoded bit stream were error-free, then the re-
encoded bit stream would be the actual transmitted
encoded bit stream before bit errors occur in the
transmission channel.

The bit error rate is computed over a window of
BER_WINDOW_LENGTH bits.

Encoder component interface
--GLOBAL CLOCKS, RESET
CLK : in std_logic; -- master clock for this FPGA, synchronous
SYNC_RESET: in std_logic; -- synchronous reset

--// Input samples
DATA_IN: in std_logic;

-- input bit. Read at rising edge of CLK when DATA_VALID_IN = '1';
DATA_VALID_IN: in std_logic;

-- one CLK-wide pulse
CTS: out std_logic;

-- Clear to send. Always check CTS = '1' before sending a new input bit
-- used for flow control.

SOF_IN: in std_logic;
EOF_IN: in std_logic;

-- 1 CLK-wide pulses indicating start and end of frames (block mode)
-- Aligned with DATA_VALID_IN.

--// CONFIGURATION
-- The configuration parameters below can be changed dynamically at run-time.
-- They are latched in at the start of frame SOF_IN = '1'.
CODE_SEL: in integer range 0 to 255;

-- see GMR-1 sections 4.4 and 4.5 for details
-- 0 = rate 1/2 convolutional code (K = 5) no puncturing 4.4.1.1, 4.4.5
-- 1 = rate 1/2 convolutional code (K = 5) P(2;3) puncturing rate 3/4
-- 2 = rate 1/2 convolutional code (K = 5) P(2;5) puncturing rate 5/8
-- etc
-- 10 = rate 1/3 convolutional code (K = 5) no puncturing
-- 20 = rate 1/4 convolutional code (K = 5) no puncturing
-- 30 = rate 1/5 convolutional code (K = 5) no puncturing
-- 60 = rate 1/4 convolutional code (K = 6) no puncturing
-- 64 = rate 1/2 convolutional code (K = 7) no puncturing
-- 96 = rate 1/2 convolutional code (K = 9) no puncturing
-- 160 = Rate ¼ Constraint length 9 Convolutional Encoder no puncturing
-- 192 = Rate 1/3 Constraint length 9 Convolutional Encoder no puncturing
-- MAXIMUM N_PARITY_BITS IS 5

CONTROL: in std_logic_vector(15 downto 0);
-- bit 0: tail biting. initialize the encoder K-1 bits in the tail
-- bit 1: extend input with K-1 zeros

--// Encoded output samples
DATA_OUT: out std_logic;
SAMPLE_CLK_OUT: out std_logic;
SOF_OUT: out std_logic;

-- one CLK-wide pulse
EOF_OUT: out std_logic;

-- because of puncturing, this end-of-frame pulse may or may not be aligned with the last
-- encoded bit in a frame

SAMPLE_CLK_OUT_REQ: in std_logic;
-- one CLK-wide pulse requesting another sample from the module upstream
-- used for flow control.

--// Monitoring, test points
TP: out std_logic_vector(4 downto 0)

4

Decoder component interface
-- GLOBAL CLOCKS, RESET
CLK: in std_logic;

-- synchronous clock. Must be a global clock constrained in the project constraint file.
SYNC_RESET: in std_logic; -- synchronous reset. active high.

-- MANDATORY to initialize internal variables

-- SOFT-DECISION INPUT BITS
-- All input samples are soft-quantized with NBSD bits
-- format example for 4-bit input samples:offset binary (0000 for strong '0', 1111 for strong '1')
-- When using hard-decision decoding, input samples should be either all zeros or all ones.
DATAIN: in std_logic_vector((NBSD-1) downto 0);
DATAIN_VALID: in std_logic;
DATAIN_READY: out std_logic;

-- flow control bit. Always check DATAIN_READY is '1' before sending more input samples.
-- In most cases, DATAIN_READY will only go low at the end of the frame to ensure a minimum separation between frames
-- (the decoder need to add a small tail at the end of each frame)

SOF_IN: in std_logic;
-- 1 CLK-wide pulse indicating start of frames (block mode)
-- Aligned with the first DATA_VALID_IN.

EOF_IN: in std_logic;
-- 1 CLK-wide pulse indicating end of frame.
-- may or may not be aligned with the last DATA_VALID_IN

--// CONFIGURATION
-- The configuration parameters below can be changed dynamically at run-time.
-- They are latched in at the start of frame SOF_IN = '1'.
CODE_SEL: in integer range 0 to 255;

-- see GMR-1 sections 4.4 and 4.5 for details
-- 0 = rate 1/2 convolutional code (K = 5) no puncturing
-- 1 = rate 1/2 convolutional code (K = 5) P(2;3) puncturing rate 3/4
-- 2 = rate 1/2 convolutional code (K = 5) P(2;5) puncturing rate 5/8
-- etc
-- 10 = rate 1/3 convolutional code (K = 5) no puncturing
-- 20 = rate 1/4 convolutional code (K = 5) no puncturing
-- 30 = rate 1/5 convolutional code (K = 5) no puncturing
-- 60 = rate 1/4 convolutional code (K = 6) no puncturing
-- 64 = rate 1/2 convolutional code (K = 7) no puncturing
-- 96 = rate 1/2 convolutional code (K = 9) no puncturing
-- 160 = Rate ¼ Constraint length 9 Convolutional Encoder no puncturing
-- 192 = Rate 1/3 Constraint length 9 Convolutional Encoder no puncturing
-- MAXIMUM N_PARITY_BITS IS 5

TAIL_BITING : in std_logic;
-- tail biting. encoder initialized the encoder K-1 tail bits
-- LIMIT: 2*TB_DEPTH*N_PARITY_BITS_MAX <= 1024

FRAME_OUT_SIZE: in std_logic_vector(11 downto 0);
-- expected output frame size, number of decoded bits

-- DECODER OUTPUTS
-- 1-bit serial
DATAOUT1b: out std_logic;
DATAOUT1b_VALID: out std_logic;
SOF_OUT: out std_logic;
EOF_OUT: out std_logic;

-- 1-bit serial

--// MONITORING (when BER_MEASUREMENT_EN = '1')
-- BER_WINDOW_LENGTH is defined within VA_GMR1_3G.vhd
BER: out std_logic_vector(23 downto 0);

-- encoded stream bit error rate
BER_VALID: out std_logic;

-- read BER at rising edge of CLK when BER_VALID = '1'
BIT_ERROR: out std_logic

-- 1 CLK-wide pulse for each detected bit error
-- Helpful in understanding the bit error statistics (with an oscilloscope): bursty? or fairly uniformly distributed?

5

 I/Os

Encoder input

1. All input signals are synchronous with the CLK reference clock

2. SOF_IN (Start Of Frame) is aligned with the first input bit

3. The user should always check the “Clear-To-Send” flag before sending additional data bits to the
encoder.

Because the data source latency in responding to the CTS clear-to-send signal from the encoder, the start of the
next frame is sent to the encoder. The encoder will store these extra bits until it is ready to encode the complete
next frame.

6

Decoder input

Input encoded frames must be separated as indicated by the DATAIN_READY flag from the decoder. It is NOT
acceptable to send the start of the next encoded frame before the current frame is fully decoded.

Software Licensing
The COM-1510SOFT is supplied under the
following key licensing terms:

1. A nonexclusive, nontransferable license to
use the VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bitstream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicense.pdf

Configuration Management
The current software revision is 1.

Directory Contents

/doc Specifications, user manual, implementation
documents

/src .vhd source code. One component per file.

/sim Test benches, Matlab .m files to generate
encoded input files with various Eb/N0 and
to compute expected BER.

/bin .ngc, .bit, .mcs configuration files

Key files:

Xilinx ISE project file: com-1510_ISE14.xise
Xilinx Vivado project file: /project1/project_1.xpr

VHDL development environment
The VHDL software was developed using the
following development environment for VHDL
synthesis and VHDL simulation.

(a) Xilinx ISE 14

(b) Xilinx Vivado 2014.2

The size is compatible with free Xilinx WebPack
tools.

Device Utilization Summary

The implementation size depends essentially on
three key user-defined parameters in the generic
section of the decoder, namely:

 Parallel vs Sequential decoding, as defined
by P_SN

 Hard/Soft-decision decoding as defined by
HARD_SOFTN_DECISION and NBSD

 Maximum constraint length K_MAX
(the actual constraint length K is
dynamically configurable at run-time but
cannot exceed the hardware capabilities
defined by K_MAX)

 Maximum number of parity bits
N_PARITY_BITS_MAX

7

http://www.comblock.com/download/softwarelicense.pdf

(the actual number of parity bits
N_PARITY_BITS is dynamically
configurable at run-time but cannot exceed
the hardware capabilities defined by
N_PARITY_BITS_MAX)

 Traceback depth TB_DEPTH

Device: Xilinx Spartan-6 -2, P_SN = ‘0’ parallel
decoding, K_MAX = 7, NBSD = 4-bit soft decision,
_PARITY_BITS_MAX = 2, TB_DEPTH = 84

Used

1 decoder

% of Spartan-6
LX45

Registers 2354 4%

LUTs 4083 14%

Block RAM/FIFO 4 3%

GCLKs 1 6%
Maximum frequency: 147.9 MHz

Device: Xilinx Spartan-6 -2, P_SN = ‘0’ parallel
decoding, K_MAX = 9,
HARD_SOFTN_DECISION = ‘1’,
N_PARITY_BITS_MAX = 4, TB_DEPTH = 120

Used

1 decoder

% of Spartan-6
LX45

Registers 7318 13%

LUTs 16376 60%

Block RAM/FIFO 10 8%

GCLKs 1 6%
Maximum frequency: 134.1 MHz

Device: Xilinx Kintex-7 -1, , P_SN = ‘0’ parallel
decoding, K_MAX = 9,
HARD_SOFTN_DECISION = ‘1’,
N_PARITY_BITS_MAX = 4, TB_DEPTH = 120

Used

1 decoder

% of
XC7K70T-1

Registers 7410 9%

LUTs 16023 39%

Block RAM/FIFO 5.5 4%

BUFG 1 3%

Device: Xilinx Kintex-7 -1, , P_SN = ‘1’ serial
decoding, K_MAX = 9, NBSD = 4-bit soft decision,
N_PARITY_BITS_MAX = 4, TB_DEPTH = 120

Used

1 decoder

% of
XC7K70T-1

Registers 1148 1%

LUTs 1319 3%

Block RAM/FIFO 12 8%

BUFG 1 3%
Maximum frequency: 252.2 MHz

Clock and decoding speed
The entire design uses a single global clock CLK.
Typical maximum clock frequencies for various
FPGA families are listed below:

Device family fCLK

Xilinx Kintex 7 -2 250 - 300 MHz

Xilinx Spartan-6 –2 130 - 150 MHz

The maximum decoded bit rate is
fCLK / N_PARITY_BITS

No Xilinx-specific code
The VHDL source code is written in generic
VHDL. No Xilinx CORE is used. No Xilinx
primitive need to be used. Dual-port RAM blocks
are inferred.

8

VHDL components overview

Top level

ENCODER_GMR_3G.vhd is the convolutional
encoder. It supports tail-biting and zero-tail
insertion mechanisms. The data source sends a
complete frame, as delineated by the SOF_IN and
EOF_IN flags. Once a complete input frame is
received, the encoder will generate a complete
encoded output frame. Thus, the encoding latency is
one input frame duration.

VITERBI_DECODER_GMR_3G.vhd is the decoder
top component in this hierarchical design. It
includes state machines to control tail-biting and
insertion of zero tail when applicable.

DATA_SPLITTER_GMR1_3G.vhd demultiplexes
each received bit into N_PARITY_BITS bins (one
for each code/generator polynomial). It also
generates an erasure bit for each punctured parity
bit.

VA_GMR1_3G.vhd is the heart of the Viterbi
algorith which includes three key processes:

The branch metric unit (VA_BMU2.vhd), the Add-
Compare-Select (VA_ACS2.vhd) and the traceback
unit (VA_TBU2.vhd).

VA_BMU2.vhd computes the local distance between
received soft-quantized bits and the hypothesis
being tested. Received bits marked with the
erasures flag are ignored in the distance
computation.

VA_TBU2.vhd segments the stream of add-
compare-select outputs into overlapping blocks of
length 2* TB_DEPTH., long enough for the Viterbi
algorithm to converge. The process is repeated
every TB_DEPTH bits. The TB_DEPTH decoded
bits are then read in the reverse order.

BER3.vhd synchronizes with the received bit stream
and counts the number of bit error when a PRBS-11
sequence is being transmitted.

INFILE2SIM.vhd reads an input file. This
component is used by the testbench to read a soft-
quantized or hard-quantized encoded bit stream
generated by the viterbi_dec_gen_input.m Matlab
program for various Eb/No cases.

SIM2OUTFILE.vhd writes three 12-bit data
variables to a tab delimited file which can be
subsequently read by Matlab (load command) for
plotting or analysis.

Test environment

Two VHDL testbenches are included in /sim
directories.

tb_viterbi_decoder_GMR_3G.vhd reads a text file
of encoded frames, feeds the soft-quantized samples
to VITERBI_DECODER_GMR_3G.vhd for
decoding and sends the decoded bits to the
BER2.vhd bit error rate tester. A Matlab .m program
generates stimulus files for various convolutional
codes and additive white Gaussian noise levels. See
viterbi_dec_input_gen_GMR_3G.m for details.

tbcom1510.vhd is a testbench consisting of a back-
to-back PRBS-11 pseudo-random sequence

9

generator, convolutional encoder, Viterbi decoder
and bit error rate tester. No stimulus file is needed.

Reference documents
[1] Geo-Mobile radio interface specifications
(Release 3) ETSI TS 101 376-5-3 v3.1.1. 2009-7

GMR-1 3G 45.003

ComBlock Ordering Information
COM-1510SOFT BLOCK MODE
CONVOLUTIONAL CODEC, VHDL SOURCE
CODE / IP CORE

ECCN: 5E001.b.4

MSS • 845-N Quince Orchard Boulevard•
Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com

10

	COM-1510SOFT Block mode convolutional FEC codec VHDL source code overview / IP core
	Overview
	Target Hardware
	Configuration
	Limitations
	Codes
	Custom codes
	Sequential vs Parallel decoding
	Hard/Soft-decision decoding

	Monitoring
	Bit Error Rate Measurement

	Encoder component interface
	Decoder component interface
	I/Os
	Encoder input
	Decoder input

	Software Licensing
	Configuration Management
	VHDL development environment
	Device Utilization Summary
	Clock and decoding speed

	No Xilinx-specific code
	VHDL components overview
	Top level

	Test environment
	Reference documents
	ComBlock Ordering Information

