

COM-1518 DIRECT SEQUENCE SPREAD-SPECTRUM DEMODULATOR 60 Mchip/s

Key Features

- Direct-Sequence Spread-Spectrum (DSSS) demodulation
- Variable chip rate up to 60 Mchips/s.
- Spreading codes: Gold, Maximal length, Barker, GPS C/A.
- BPSK, QPSK selectable.
- Continuous mode operation (i.e. Burst mode is not supported)
- Maximum processing gain: 33 dB Spreading factor: 3 to 2047
- Code period can be (significantly) longer than symbol period: Maximal code period: 65535
- 30-bin parallel code search for fast code acquisition.
- False code lock prevention.
- Accurate time of arrival pulse generated once per code period (can be used for round-trip delay measurement for example).
- Built-in Bit Error Rate measurement.
- Demodulation performances: within 1.5 dB from theory at threshold Eb/No of 2 dB.
- 4-bit soft-quantized demodulated bits to USB, LAN¹ or synchronous output.
- Monitoring:
 - Receiver lock
 - Carrier frequency error
 - o SNR
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.

¹ When used in conjunction with COM-5102

• Connectorized 3"x 3" module for ease of prototyping. Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

Electrical Interface

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2016 Issued 2/16/2016

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1518.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Typical Configurations

130005

Block Diagram

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB

or connections via adjacent ComBlocks:

• USB, TCP-IP/LAN, Asynchronous serial (DB9), PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1518 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1518 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

COM1518 Direct Sequence Spread-Spectrum Demodulator 60 Mchip/s Basic Settings				
Input Conditioning				
📝 Input bias removal	Input center frequency: 5000.001 Hz			
Internal AGC	AGC response time: 9 0 - 14			
Input selection: 2*12-bit (I/Q) complex baseband 👻	Measured input sampling rate: 79995572 Samples/s			
DSSS Demodulation				
Chip rate: 10000000 Chips/s	Symbol rate: 100000 Symbols/s			
Code period: 127 chips	Code Type: Maximal length sequence 👻			
Polynomial G1: 000044 Hex	Polynomial G2: 30804e Hex			
G1/G2 offset: 117 bits	GPS satellite ID: 53			
Detect sync word Spectrum inversion	Symbol decoding: QPSK 👻			
Output: J9 connector, 40MHz clock 👻				
General				
Restore Default Apply Ok Advan Cancel				

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

All control registers are read/write. Definitions for the Control registers and Status registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Several key parameters are computed on the basis of the 120 MHz internal processing clock f_{elk_p} : frequency translation, chip rate, etc.

Parameters	Configuration
Nominal input center frequency (f _c)	The nominal center frequency can be null (in the case of a baseband input signal) or non-zero in the case of an IF input signal. If the IF center frequency is sufficiently greater than the modulation bandwidth (chip rate), the Q input can be ignored and forced to zero, thus saving an ADC.
	This field can also be used for fine frequency corrections, for example to correct clock drifts. 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{clk_p}$
	REG1 = bits 7 - 0 (LSB2)REG2 = bits 15 - 8REG3 = bits 23 - 16REG4 = bits 31 - 24 (MSB)
Chip rate (fchip rate)	32-bit integer expressed as fchip rate * $2^{32}/f_{elk,p}$. The maximum practical chip rate is $f_{elk,p}$ /2.
	Example 40 Mchips/s: 0x55555555
	The maximum allowed error between transmitted and received chip rate is +/-100ppm.
	REG5 = bits 7-0 (LSB) REG6 = bits 15 - 8 REG7 = bits 23 - 16 REG8 = bits 31 - 24 (MSB)
Code period	In chips. Valid range 3 – 65535
	Can be less than the natural length of the selected code. In which case, the code is truncated.

	REG9 LSB
	REG10 MSB
Code selection	1 = Gold code
Code selection	2 = Maximal length sequence
	3 = Barker code (lengths 11 or 13 only)
	4 = GPS C/A codes (use G2 as GPS
	PRN number)
	DEC11/2 0
Gold sequence /	KEGI1(2:0) 24 bit Describes the tans in the linear
Maximal Length	feedback shift register 1:
Sequence	Bit 0 is the leftmost tap $(2^0$ in the
generator	polynomial). The largest non-zero bit is
polynomial G1	the polynomial order n. n determines
	the code period $2^n - 1$.
	Example:
	$G1 = 1 + x + x^4 + x^5 + x^6$ is represented
	as 0x000039
	This field is used only if Gold code or
	Maximal length sequences are selected.
	REG12 = bits 7 - 0 (LSB)
	REG13 = bits 15 - 8
Cold and	$\frac{\text{REG14} = \text{DIts } 23 - 16 \text{ (MSB)}}{24 hit Describes the targe in the linear$
generator	feedback shift register 2: Same format
polynomial G2	as G1 above
	This field is used only if Gold codes are
	selected.
	REG15 = bits 7 - 0 (LSB)
	REG16 = bits 15 – 8
	REG17 = bits 23 – 16 (MSB)
Gold code	A Gold code is generated by adding two
GI/G2 phase	maximal length sequences (as defined
onset	by their generator polynomials G1 and
	G2). A set of orthogonal Gold codes
	offset between the two maximal length
	sequences
	REG18 = bits 7 - 0 (LSB)
	REG19 = bits 15 - 8
	REG20 = bits 23 - 16 (MSB)
GPS satellite ID	GPS signals from different satellites are
	designated by a PRN signal number in
	the range $1 - 37$.
	This field is used only if GPS C/A
	codes are selected.
	REG18(5:0)
Symbol rate	independently of the spreading code
f _{symbol_rate}	nacependentry of the spreading code
	for the set of the se
	-symbol_rate 2 / tetk_p
	Limitation: the symbol rate must be
	higher than chip rate / 2047.
	REG21 = bits 7 - 0 (LSB)
	REG22 = bits 15 - 8
	REG23 = bits 23 - 16
	REG24 = bits 31 - 24 (MSB)

Spreading factor	Approximate (i.e truncated) ratio of chip rate / symbol rate			spurious DC bias that may be
(Processing	Range: 3 – 2047			Disable this function if the input signal
gain)	Note: to effectively achieve this			includes a legitimate DC offset.
	processing gain, the			0 = disable
	symbol duration.			1 = enable
	REG25 = bits 7 - 0 (LSB)			REG28(0)
	REG26(2:0) = bits 8 - 10		AGC response	Users can to optimize AGC response
Spectrum	Invert Q bit. (Inverts the modulated		time	time while avoiding instabilities
inversion	spectrum only, not the subsequent			(depends on external factors such as
	0 = off			gain signal filtering at the RF front-end
	1 = 0			control signal is undated as follows
				0 = every chip.
	REG27(0)			1 = every 2 input chips,
BPSK / QPSK	Note: the modulation symbol transitions			2 = every 4 input chips,
decoding	are not necessarily aligned with the chip			3 = every 8 input chips, etc
	transitions.			10 = every 1000 input chips.
	$0 = \mathbf{RPSK}$			valid range 0 to 14.
	1 = OPSK			REG29(4:0)
			Demodulated	1 = J9 connector . 40 MHz clock, I/O
	REG27(1)		output selection	serialized when QPSK.
Sync word	0 = disabled			2 = USB, 1-bit hard quantized, packed into
detection	I = enabled			8-bit bytes, MSb first.
	periodic synchronization sequence. The			3 = USB, 4-bit soft-quantized, packed into
	demodulator inherent phase ambiguity			8-bit bytes. $4 = 1.4 \text{ N/TCD}(n \text{ and } 1028) + 1.64 \text{ hand}$
	can only be removed if this feature is			auantized, packed into 8-bit bytes, MSb
	enabled at both modulator and			first.
	demodulator.			5 = LAN/TCP(port 1028), 4-bit soft-
Internal AGC	REG27(5)			quantized, packed into 8-bit bytes.
	for an external gain control actuator (for			6 = despread I/Q samples, 120 MS/s
	example RF or IF receiver gain control)		Enchla teat	REG32(2:0)
	to prevent saturation at the external A/D		points	connector
	converter.		1	REG32(7)
	When no such external gain control			
	exists a substitute internal gain control			
	should be enabled here.			
	Do not enable the internal AGC in the			
	case of IF undersampling as it may			
	cause instabilities.			
	0 = internal AGC enabled			
	1 = internal AGC bypassed			
D 1 1	REG27(6)			
Baseband or IF	0 = baseband input (I/Q complex)			
Input	samples) 1 = IE input (Las real input O is			
	ignored)			
	-6			
	REG27(7)			
Bias removal	The bias removal circuit removes any			
l enable		1		

Network Interface		
Parameters	Configuration	
Reserved	REG35 through 40 are reserved for the	
	LAN MAC address. These registers are	
	set at the time of manufacturing.	
IP address	4-byte IPv4 address.	
(when	Example : 0x AC 10 01 80 designates	
connected	address 172.16.1.128	
to Gbit	The new address becomes effective	
Ethernet	immediately (no need to reset the	
PHY like	ComBlock).	
COM-	REG41: MSB	
5102,	REG42	
COM-	REG43	
5104)	REG44: LSB	

(Re-)Writing to the last control register REG44 is recommended after a configuration change to enact the change.

Status Registers

Parameters	Monitoring
Hardware	At power-up, the hardware platform
self-check	performs a quick self check. The result is
	stored in status registers SREG0-7
	Properly operating hardware will result in
	the following sequence being displayed:
	SREG0/1/2/3/4/5/6 = 2C F1 95 xx 0F 01
	24.
	SREG7 is 22 when LAN adapter is plugged
	in.
Input	The input sampling rate is measured and
sampling rate	displayed here. The frequency
	measurement accuracy is a function of the
	internal clock stability.
	The measurement is expressed in Hz.
	SREG8 = bit 7-0 (LSB)
	SPEC0 = hit 15
	SKE09 = 01(13 - 8)
	SREG10 = bit $23 - 16$
	SREGI1(2:0) = bit 26 - 24 (MSB)
AGC	Front-end AGC gain settings. 12-bit
	unsigned. Inverted (0 for maximum gain)
	SREG12 (LSB)
	SREG13(3:0) (MSB)
Decimation	Internal decimation ratio based on the input
factor R	sampling rate and the specified chip rate.
	SREG14 (LSB)
	SPEG15 (MSB)
Carrier	Residual frequency offset with respect to
frequency	the nominal carrier frequency
offset	24-bit signed integer expressed as
	fcdelta * 2^{24} / fet p
	SREG16 = bits $7 - 0$ (LSB)
	SREG17 = bits $15 - 8$
	SREG18 = bits 23 - 16 (MSB)
Carrier lock	SREG20(0)
status	0 = unlocked
	1 = locked
Code lock	SREG20(1)
status	0 = unlocked
	1 = locked
Signal	SREG20(2)
presence	0 = not present
(trom FFT)	1 = present
SOF lock	Detect presence of periodic sync word
status	when enabled.
	SKEU2U(3)
	1 = locked
Despread	1 - IULACU Average signal power after despreading
signal	Compute the signal to poise ratio after
power S	despreading as S/N. The absolute value is
Ponero	meaningless because of multiple ages
L	

	SREG21 = bits 7 - 0, LSB
	SREG22 = bits 15 - 8, MSB
Noise power	Average noise power. Used to compute the
N	SNR after despreading. The absolute value
	is meaningless because of multiple ages.
	SREG23 = bits 7 - 0, LSB
	SREG24 = bits 15 - 8, MSB
SNR	2*(S+N)/N ratio,
	valid only during code lock.
	Linear (not in dBs). Fixed point 14.2
	SREG25 (LSB)
	SREG26 (MSB)
Bit error rate	Monitors the BER (number of bit errors
	over 1,000,000 received bits) when the
	modulator is sending a PRBS-11 test
	sequence.
	SREG27: LSB
	SREG28:
	SREG29:
	SREG30: MSB
BER tester	SREG31(0): 1 when the BERT is
synchronized	synchronized with the received PRBS-11
	test sequence.
TCP-IP Con	ection Monitoring
Parameters	Monitoring
LAN PHY ID	Expect 0x22 when LAN adapter is plugged
	in.
	SREG7
MAC address	Unique 48-bit hardware address (802.3). In
	the form SREG32:SREG33:SREG34:
	:SREG37
TCP-IP	Bit $0 = \text{port } 1028 \text{ (M\&C) connected}$
connections	Bit $1 = port 1024$ (data) connected
	1 for connected, 0 otherwise
	SREG38(1:0)

Multi-byte status variables are latched upon (re-)reading SREG7.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the button to start, then select the signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal	Buffer
		sampling	length
1. In mot all mail I	0.1.4	rate	(samples)
1: Input signal I-	8-bit	Input	512
channer	signed	sampling	
2. Input signal (I-	8-hit	Input	512
channel) after AGC,	signed	sampling	512
frequency	Signed	rate/R	
translation,			
3: Despread L	Q hit	2 complos /	512
channel, center.	o-on signed	2 samples /	512
after I&D	signed	symbol	
4: front-end AGC	8-bit	1 sample /	512
	unsigned	symbol	
Trace 2 signals	Format	Nominal	Buffer
		sampling	length
1: Input signal O	9 h.;+	Tate	(samples)
channel	o-on signed	sampling	512
	signed	rate	
2: Code replica.	8-bit	2	512
Compare with	signed	samples/chip	
spread input	0	1 1	
signals			
3: Demodulated I-	8-bit	1 sample /	512
channel	signed	symbol	
Trace 3 signals	Format	Nominal	Buffer
		sampling	length (semples)
1: spread I-channel	8-hit	2	(samples)
after carrier tracking	signed	samples/chip	512
and channel LPF	8	F	
2: Code tracking	8-bit	2 samples /	512
(accumulated)	signed	symbol	
3: Carrier tracking	8-bit	Input	512
phase	signed	sampling	
	-	rate/R	
4: Symbol tracking	8-bit	1 sample /	512
phase (accumulated)	signed	symbol	~
Trace 4 signals	Format	Nominal	Capture
		sampling	length (samplos)
1. 2(S+N)/N after	8-bit	fat	(samples)
despreading. Valid	unsigned	±CIK	512
only if code is			
locked.			
Linear (i.e. not in		1	

dBs)			
2: Averaged signal power (valid only	8-bit signed	f _{clk}	512
during code	8		
3: Averaged noise	8-bit	felk	512
power (valid only	signed	- cik	•
during code tracking)			
Trigger Signal	Format		
1: Start of code	Binary		
replica			
2. Code Lock	Binary		

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk} processing clock as real-time sampling clock.

In particular, selecting the f_{elk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope example, showing code lock with aligned: received spread signal after RRC filter (green) vs code replica (red)

ComScope example: showing demodulated Ichannel

Digital Test Points

Enabled if REG32(7) = '1', high-impedance otherwise.

Test	Definition
Point	
J6/A29	Recovered carrier/center frequency (coarse)
J6/A30	Carrier lock
J6/A31	Code lock
J6/A32	Recovered carrier/center frequency (fine)
J6/A33	Recovered symbol clock
J6/A34	Start of spreading code replica (compare with
	start of spreading code at the modulator)
J6/A35	Spreading code replica
J6/A36	Spread I signal (MSB) (compare with
	spreading code replica above)
J6/A37	BER tester synchronized
J6/A38	Byte error detected by BER tester

Operation

Spreading codes

Spreading codes are pseudo random sequences which falls within the following categories:

- Gold sequences, for best autocorrelation properties
- Maximal length sequences
- Barker codes (length 11, 13)
- GPS C/A codes.

The same spreading code is used on both the inphase (I) and quadrature (Q) channels.

Gold sequences

Gold sequences are generated using two linear feedback shift registers LFSR1 and LFSR2 as illustrated below:

The code period is 2ⁿ-1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its two generator polynominals. The highest order is n. The generator polynominals are user programmable.

A few commonly used Gold sequences are listed below:

n = 5 (length 31): G1 = $1 + x^2 + x^5$ (0x000012) G2 = $1 + x + x^2 + x^4 + x^5$ (0x00001B)

n = 6 (length 63): G1 = 1 + x^5 + x^6 (0x000030) G2 = 1 + x + x^4 + x^5 + x^6 (0x000039)

n = 7 (length 127): G1 = $1 + x^3 + x^7$ (0x000044) G2 = $1 + x + x^2 + x^3 + x^4 + x^5 + x^7$ (0x00005F)

n = 9 (length 511): G1 = $1 + x^5 + x^9$ (0x000110) G2 = $1 + x^3 + x^5 + x^6 + x^9$ (0x000134)

n = 10 (length 1023): G1 = $1 + x^7 + x^{10}$ (0x000240) G2 = $1 + x^2 + x^7 + x^8 + x^{10}$ (0x0002C2)

n = 11 (length 2047): G1 = $1 + x^9 + x^{11}$ (0x000500) G2 = $1 + x^3 + x^6 + x^9 + x^{11}$ (0x000524)

Maximal length sequences

Maximal length sequences are generated using one linear feedback shift register LFSR1 as shown below:

The code period is 2ⁿ-1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its generator polynominal. The highest order is n. The generator polynominal is user programmable.

A few commonly used maximal length sequences are listed below:

 $n = 4 \ (\text{length 15}): \\ G1 = 1 + x + x^4 \ (0x000009) \\ n = 5 \ (\text{length 31}): \\ G1 = 1 + x^2 + x^5 \ (0x000012) \\ n = 6 \ (\text{length 63}): \\ G1 = 1 + x + x^6 \ (0x000021) \\ n = 7 \ (\text{length 127}): \\ G1 = 1 + x + x^7 \ (0x000041) \\ n = 8 \ (\text{length 255}): \\ G1 = 1 + x^2 + x^3 + x^4 + x^8 \ (0x00008E) \\ n = 9 \ (\text{length 511}): \\ G1 = 1 + x^4 + x^9 \ (0x000108) \\ n = 10 \ (\text{length 1023}): \\ G1 = 1 + x^3 + x^{10} \ (0x000204)$

Barker Codes

11 bit Barker code: 101 1011 1000, or 0x5B8 13 bit Barker code: 1 1111 0011 0101, or 0x1F35

The length (11 or 13) must be entered as spreading factor in REG4/5.

GPS C/A Codes

GPS C/A codes are modified Gold codes of length 1023 with generator polynomials: $G1 = 1 + x^3 + x^{10}$ $G2 = 1 + x^2 + x^3 + x^6 + x^8 + x^9 + x^{10}$

The G2 generator output is slightly modified so as to create a distinct code for each satellite. The G2 output is generated by summing two specific taps of the shift register. In the case of Satellite ID 1 for example, taps 2 and 6 are summed.

The G2 output taps are listed below:

Satellite	G2	Satellite ID /	G2 output
ID /	output	GPS PRN	taps selection
GPS	taps	Signal	_
PRN	selectio	Number	
Signal	n		
Number			
1	2 xor 6	21	5 xor 8
2	3 xor 7	22	6 xor 9
3	4 xor 8	23	1 xor 3
4	5 xor 9	24	4 xor 6

5	1 xor 9	25	5 xor 7
6	2 xor 10	26	6 xor 8
7	1 xor 8	27	7 xor 9
8	2 xor 9	28	8 xor 10
9	3 xor 10	29	1 xor 6
10	2 xor 3	30	2 xor 7
11	3 xor 4	31	3 xor 8
12	5 xor 6	32	4 xor 9
13	6 xor 7	33	5 xor 10
14	7 xor 8	34	4 xor 10
15	8 xor 9	35	1 xor 7
16	9 xor 10	36	2 xor 8
17	1 xor 4	37	4 xor 10
18	2 xor 5		
19	3 xor 6		
20	4 xor 7		

Compliant with "Navstar GPS Space Segment / Navigation User Interfaces" specifications, ICD-GPS-200, Revision C. IRN-200C-004, 12 April 2000.

Symbol Rate

The demodulation symbol rate is independent of the chip rate and code period. The demodulator includes an autonomous symbol tracking loop, separate from the code tracking loop. However, the full spread-spectrum processing gain can only be achieved if the code period is greater than the symbol period.

Frequency Tracking

The demodulator comprises a phase locked loop (PLL) and FFT-based frequency acquisition circuit. Once the code is locked, the frequency acquisition circuit detects and corrects a maximum initial frequency error of \pm -chip rate / 256.

Once locked, the carrier tracking loops tracks the carrier phase over a very wide frequency range.

Note: the minimum practical symbol rate is such that (symbol_rate/200) > (chip_rate/(256*2048)). Reason: the Costas carrier tracking loop must be able to acquire any frequency error remaining after the initial frequency acquisition.

Code Tracking Loop

The code tracking loop is a coherent delay lock loop (DLL) of the 1^{st} order.

Code Acquisition

30 parallel detectors search for code aligment during the code acquisition phase. During the subsequent code tracking phase, 3 detectors track the early/center/late code while the other 27 detectors scan for false lock. The detectors are staggered $\frac{1}{2}$ chip apart.

Detection is performed in two steps: first a coherent detector averages the despread signal over $\frac{1}{2}$ a symbol period. The result is squared and further averaged over 25 symbols.

Variable decimation

This module is designed to work over a wide range of chip rates. It includes a variable decimation filter at the input to prevent aliasing when resampling at low chip rates. The optimum decimation ratio is set automatically.

Front-End AGC

The purpose of this AGC is to prevent saturation at the input signal A/D converters while making full use of the A/D converters dynamic range. Therefore, AGC reacts to the composite input signal which may comprise not only the useful signal but also adjacent channel interferers and noise. The principle of operations is outlined below:

- (a) The peak magnitude of the complex input samples in any symbol period is computed and continuously averaged. The length of averaging depends on the AGC response parameter set by the user.
- (b) The average magnitude is compared with a target magnitude threshold and the AGC gain is adjusted accordingly.
- (c) An analog gain control signal AGC_OUT is generated either by a 12-bit DAC or a 10bit PWM, depending on the connectivity and firmware option.
- (d) If the external receiver has its own local AGC or does not feature a gain control input, then the COM-1518 AGC loop should be set as 'internal'.

Options

Several interface types are supported through multiple firmware options. All firmware versions can be downloaded from

http://www.comblock.com/download.html

Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 1.2 seconds

Option	Definition
-A	Left (J6) connector: complex or real baseband input sampled signal. 2*12-bit clock synchronous (compatible with COM- 30xx receivers) Right (J9) connector: 4-bit soft-quantized demodulated output, synchronous serial
-В	Left (J6) connector: GbE LAN adapter interface (compatible with COM-5102 adapters) Right (J9) connector: complex or real baseband input sampled signal. 2*12-bit clock synchronous (compatible with COM- 30xx receivers)
-C	Left (J6) connector: GbE LAN adapter interface (compatible with COM-5102 adapters) Right (J9) connector: analog baseband I/O. (compatible with COM-3504 dual Analog<- >Digital conversion)
-D	Left (J6) connector: complex or real baseband input sampled signal. 2*12-bit clock synchronous (compatible with COM- 30xx receivers)
	Right (J9) connector: despread output to an external dual DAC, 2*10-bit clock synchronous. (compatible with COM-2001 dual DAC)

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in JP1 position 2-3 prior and during power-up. This prevents the FPGA configuration and restore communication. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

Troubleshooting Checklist

Demodulator can't achieve lock even at high signalto-noise ratios:

• Make sure the modulator baseband I/Q signals do not saturate, as such saturation would strongly distort the modulation phase information. (this is a phase demodulator!)

Demodulator can demodulate BPSK but not QPSK:

• A spectrum inversion may have occurred in the RF transmission chain. If so, invert the spectrum inversion flag at the demodulator.

Interfaces

Input Interface	Definition
DATA_I_IN[11:0]	Modulated input signal, real axis.
	12-bit precision <u>unsigned</u> .
	Unused LSBs are pulled low.
	LVTTL 0 – 3.3V
DATA_Q_IN[11:0]	Modulated input signal, imaginary
	axis. Same format as DATA_I_IN.
SAMPLE_CLK_IN	Input signal sampling clock. One
	CLK-wide pulse. Read the input
	signal at the rising edge of CLK
	when SAMPLE_CLK_IN = '1'.
	Samples can be consecutive.
	Signal is pulled-up.
	LVTTL 0 – 3.3V
AGC1_OUT	Output. When this demodulator is
	connected directly to an analog
	receiver, it generates an analog or
	PWM signal to control the gain prior
	to A/D conversion. The purpose is to
	use the maximum dynamic range
	while preventing saturation at the
	A/D converter. 0 is the maximum
	gain, +3V is the minimum gain.
CLK_IN	Input reference clock for
	synchronous I/O. DATA_x_IN and
	SAMPLE_CLK_IN are read at the
	rising edge of CLK_IN. Maximum
	120 MHz.

Demodulated	Definition
Output	
DATA_I_OUT[3:0]	4-bit soft-quantized demodulated
	bits, real axis. Unsigned
	representation: 0000 for
	maximum amplitude '0', 1111 for
	maximum amplitude '1'.
	When the serial output mode is
	selected, I and Q samples are
	transmitted one after another on
	this interface. I is transmitted
	before Q.
DATA_Q_OUT[3:0]	4-bit soft-quantized demodulated
	bits, imaginary axis. Same format
	as DATA_I_OUT.
	When the serial output mode is
	selected, this interface is unused.
SAMPLE_CLK_OUT	Demodulated bit clock. One
	CLK-wide pulse. Read the output
	signal at the rising edge of CLK
	when SAMPLE_CLK_OUT =
	'1'.
RX_LOCK	'1' when the demodulator is
	locked, '0' otherwise.
	The lock status is based on the
	code lock.
CLK OUT	40 MHz output reference clock

Monitoring	Definition
Output	
DESPREAD_I[9:0]	Output I-channel signal after
	channel filtering, despreading,
	integrate and dump.
	10-bit precision unsigned.
	Can drive a COM-2001 dual D/A
	converter. LVTTL $0 - 3.3V$
DESPREAD_Q[9:0]	Q-channel. Same format as
	DESPREAD_I
DESPREAD_CLK	Output signal sampling clock. One
	CLK-wide pulse once per symbol.
	Read the output signal at the rising
	edge of CLK when
	DESPREAD_CLK = '1'.
CLK_P	90 MHz output clock (internal
	processing clock).

Power	4.75 – 5.25VDC. Terminal block. 250
Interface	mA typ.

Absolute Maximum Ratings

Supply voltage	-0.5V min, +6V
	max
40-pin connector inputs (when	-0.5V min, +3.6V
configured as LVTTL)	max

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Timing

Input

Mechanical Interface

Schematics

The board schematics are available on-line at http://comblock.com/download/com_1500schematics.pdf

Pinout

USB

Both USB ports are equipped with mini type AB connectors. (G = GND). In both cases, the COM-1524 acts as a USB device.

Left Connector J6

Firmware Option -A. Input compatible with COM-30xx receivers.

Right Connector J9

Firmware Option -C. 2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM-3504 dual Analog<->Digital Conversions.

Firmware Option -B. 2*12-bit input samples. Input compatible with COM-30xx receivers.

Firmware Options –D. 2*12-bit output samples. This interface is compatible with the COM-2001 dual 10-bit DACs.

I/O Compatibility List

(not an exhaustive list)

Left connector (J6)
COM-5102 Gigabit Ethernet + HDMI interface
COM-5401 4-port 10/100/1000 Mbps Ethernet
Transceivers (limited to one port)
COM-30xx RF/IF/Baseband receivers for frequencies
ranging from 0 to 3 GHz.
COM-1524 channel emulator
COM-1519 DSSS modulator (back to back)
COM-1800/1500 FPGA + ARM development platforms
Right connector (J9)
COM-3504 Dual Analog <-> Digital Conversions
2*16-bit 250 MSamples/s
COM-30xx RF/IF/Baseband receivers for frequencies
ranging from 0 to 3 GHz.
COM-2001 Digital-to-Analog Conversion, Baseband
2*10-bit 125 MSamples/s
COM-1524 channel emulator
COM-1509 Error correction codec 120Mbits/s
COM-7002 Turbo code decoder
COM-1519 DSSS modulator (back to back)
<u>COM-1600</u> / <u>1500</u> FPGA + ARM development platforms

Configuration Management

This specification is to be used in conjunction with VHDL software revision 5 and ComBlock control center revision 3.09d and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1518 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

Comparison with Previous ComBlocks

Key Improvements with respect to COM-1418 Direct-

- Sequence Spead-Spectrum Demodulator

 Support for IF undersampling (real) input
- Support for IF undersampling (real) in
 2x faster: maximum chip rate is fclk/2
- Independent chip rate and symbol rate: symbol duration and alignment are independent of the spreading code period (2 independent tracking loops for code and symbol timing)
- Higher symbol rate (60 Mchips/s)
- Variable decimation and anti-aliasing filtering
- Faster code acquisition through parallel code acquisition (30 parallel cells) instead of sequential
- search.
- Faster center frequency acquisition through FFT.
- Better performance through reduced dependencies between loops: code acquisition is less dependent on center frequency error.
- Independent AGCs before and after despreading.
- Phase ambiguity resolution under control of external FEC decoder.

ComBlock Ordering Information

COM-1518 Direct sequence spread-spectrum demodulator. 60 Mchip/s.

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com