

COM-1518SOFT HIGH-SPEED DIRECT-SEQUENCE SPREAD-SPECTRUM DEMODULATOR VHDL SOURCE CODE / IP CORE

Overview

The COM-1518SOFT is a digital direct-sequence spread-spectrum demodulator written in VHDL, for intermediate frequency or baseband input signals. It is designed to be embodied within a single low-cost FPGA such as the Xilinx Spartan-6 LX45.

The entire **VHDL source code** is provided.

Key features and performance:

- Direct-Sequence Spread-Spectrum (DSSS) demodulation
- Continuous mode operation (i.e. Burst mode is not supported)
- Maximum processing gain: 33 dB Spreading factor: 3 to 2047
- Code period can be (significantly) longer than symbol period: Maximal code period: 65535
- Maximum chip rate: 50% of processing clock frequency.
 - o 78 Mchips/s Xilinx Spartan-6 -2
 - 99 Mchips/s Xilinx Kintex-7 -2
- Parallel code search for fast code acquisition. The number of parallel search circuits instantiated within can be selected by the user prior to synthesis.
- False code lock prevention.
- Accurate time of arrival pulse generated once per code period (can be used for round-trip delay measurement for example).
- Built-in Bit Error Rate measurement.

Target Hardware

The code is written in generic VHDL so that it can be ported to a variety of FPGAs. The code was developed and tested on a Xilinx Spartan-6 FPGA.

It can be easily ported to any Xilinx Kintex7, Virtex-6, Spartan-6, Virtex-5 FPGAs and other FPGAs.

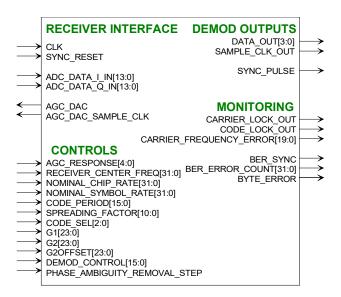
Device Utilization

Device: Xilinx Spartan-6 XC6SLX45-2

	30 parallel code	%
	acquisition circuits	utilization
Flip Flops	9221	16%
LUTs	9414	34%
RAMB16BWERs	5	4%
DSP48A1s	20	34%
GCLKs	1	6%
DCMs/PLLs	0	0%

Device: Xilinx Kintex-7 XC7K70T-2

	30 parallel code	%
	acquisition circuits	utilization
Flip Flops	8999	10%
LUTs	12195	29%
RAMB16BWERs	4	2%
DSP48E1s	20	8%
GCLKs	1	6%
DCMs/PLLs	0	0%

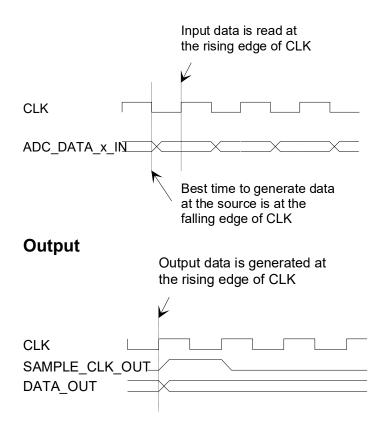

Clock speed

This design uses a single global clock, namely the ADC sampling clock. Typical maximum clock frequencies for various FPGA families are listed below:

Device family	f _{elk_rx}	Max. chip rate
Xilinx Kintex 7 -2	198 MHz	99 Mchips/s
Xilinx Virtex-6 -2	156 MHz	78 Mchips/s
Xilinx Spartan-6 –3	177 MHz	88 Mchips/s

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2016 Issued 7/22/2016

Interfaces



This component's interface comprises four distinct groups:

 (a) the receiver interface typically connects to one (IF) or two (baseband) analog-to-digital converters (ADC). Use both I and Q inputs in the case of near-zero center frequency signal. Use the I input only in the case of IF input signal, while the Q input is set to zero.

The entire component operates with a single clock CLK, typically the ADC sampling clock.

- (b) The demodulator output consists of 4-bit soft-quantized output. The most significant bit DATA_OUT(3) represents the demodulated bit, while the remaining bits DATA_OUT(2:0) rate its quality.
- (c) Controls can be changed at any time. In most cases, the component should be reset with a SYNC_RESET pulse after a configuration change.
- (d) Monitoring

Input

Monitoring and Control

Configuration

The key configuration parameters are brought to the interface so that the user can change them dynamically at run-time. Other, more arcane, parameters are fixed at the time of VHDL synthesis.

Pre-synthesis configuration parameters

The following configuration parameters are set as constants prior to synthesis

constants prior to synthesis		
Configuration	Description	
parameters in		
DSSS DEMOD2		
Number of parallel code	NACQ	
acquisition circuits	The larger this number, the	
	faster the code acquisition time. The FPGA occupancy	
	increases significantly as	
	well.	
	Limitation:	
	NACQ must be selected to	
	be less than half the	
	spreading factor.	
Non-coherent Integration	N_NCID	
and Dump (I&D) period	Number of successive	
	coherent I&D results	
	accumulated non-coherently	
	(power-wise) to improve the	
	SNR before making a dectection decision.	
	Trade-off acquisition speed	
	versus acquisition SNR	
	threshold.	

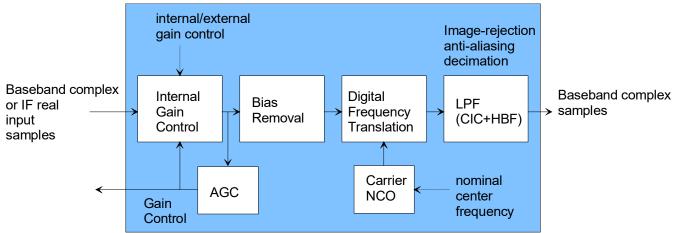
Run-time configuration parameters

The user can set and modify the following controls at run-time. All controls are synchronous with the user-supplied global CLK. Most configuration changes should be followed by a SYNC_RESET pulse.

The FPGA processing clock equals the ADC sampling clock: f_{clk_rx}

D (
Parameters	Configuration
AGC response time	Users can to optimize AGC response time while avoiding instabilities (depends on external factors such as gain signal filtering at the RF front-end and chip rate). The AGC_DAC gain control signal is updated as follows 0 = every chip, 1 = every 2 input chips, 2 = every 4 input chips, 3 = every 8 input chips, etc 10 = every 1000 input chips. Valid range 0 to 14.
Nominal Center frequency (f _{IF})	AGC_RESPONSE(4:0) The nominal center frequency can be null (in the case of a baseband input signal) or non-zero in the case of an IF input signal. If the IF center frequency is sufficiently greater than the modulation bandwidth (chip rate), the Q input can be ignored and force to zero, thus saving an ADC. This field can also be used for fine frequency corrections, for example to correct clock drifts. 32-bit signed integer (2's complement representation) expressed as $f_{IF}* 2^{32} / f_{elk_rx}$
Chip rate (fchip rate)	RECEIVER CENTER FREQ(31:0)32-bit integer expressed as fchip rate * 232 / fclk_rx.The maximum practical chip rate is fclk_rx / 2.Example for a 150 MHz fclk_rx: 60 Mchips/s: 0x666666666666666666666666666666666666

Code period	In ching
code period	In chips.
	Valid range 3 – 65535
	Can be less than the natural length of the
	selected code. In which case, the code is
	truncated.
	CODE_PERIOD(31:0)
Code	1 = Gold code
selection	2 = Maximal length sequence
	3 = Barker code (lengths 11 or 13 only)
	4 = GPS C/A codes (use G2 as GPS PRN number)
	CODE SEL(2:0)
Gold	24-bit. Describes the taps in the linear
sequence /	feedback shift register 1:
Maximal	Bit 0 is the leftmost tap $(2^{\circ} \text{ in the})$
Length	polynomial). The largest non-zero bit is the
Sequence	polynomial order n. n determines the code
generator polynomial	period $2^n - 1$.
G1	Example:
	$G1 = 1 + x + x^4 + x^5 + x^6$ is represented as
	0x000039
	This field is used only if Gold code or
	Maximal length sequences are selected.
Gold code	
generator	24-bit. Describes the taps in the linear
polynomial	feedback shift register 2: Same format as G1 above.
G2	This field is used only if Gold codes are
	selected.
	G2(23:0)
Gold code	A Gold code is generated by adding two
G1/G2	maximal length sequences (as defined by
phase offset	their generator polynomials G1 and G2). A
	set of orthogonal Gold codes can be
	created by changing the phase offset
	between the two maximal length
	sequences.
GPS	G2OFFSET(23:0) GPS signals from different satellites are
satellite ID	designated by a PRN signal number in the
	range $1 - 37$.
	This field is used only if GPS C/A codes
	are selected.
	G2(5:0)
Symbol rate	The symbol rate can be set independently
f _{symbol_rate}	of the spreading code period as
• = ***	$\mathbf{f}_{symbol_rate} * 2^{32} / \mathbf{f}_{clk_tx}$
	Limitation: the symbol rate must be higher
	than chip rate / 2047.
	NOMINAL_SYMBOL_RATE(31:0)


<u> </u>	
Spreading	Approximate (i.e truncated) ratio of chip
factor	rate / symbol rate
(Processing	Range: 3 – 2047
gain)	Note: to effectively achieve this
	processing gain, the
	code period must be longer than one
	symbol duration.
	SPREADING_FACTOR(10:0)
Spectrum	Invert Q bit. (Inverts the modulated
inversion	spectrum only, not the subsequent
	frequency translation)
	0 = off
	1 = on
DDCV /	DEMOD CONTROL(0)
BPSK /	Note: the modulation symbol transitions
QPSK decoding	are not necessarily aligned with the chip
decounig	transitions.
	0 = BPSK
	1 = QPSK
	DEMOD_CONTROL(1)
Carrier	00 = nominal
frequency	01 = 2x loop gain
loop gain	10 = 4x loop gain
	11 = 8x loop gain
	DEMOD CONTROL(3:2)
AFC enable	The automatic frequency control circuit
TH C chable	
	extendeds the frequency acquisition over
	+/- 10% of the symbol rate. When
	disabled, the receiver only means of
	carrier acquisition is the carrier frequency
	tracking loop which is inherently limited
	to approximately 1% of the symbol rate.
	The AFC should only be active during
	acquisition as it interferes with the Costas
	Loop operation.
	00 = automatic AFC selection.
	01 = force AFC disabled. Carrier tracking
	loop only
	10 = force AFC enabled.
	11 = reserved (test).
T . 1	DEMOD_CONTROL(5:4)
Internal vs	The code can act as a level sensor for an
external	external gain control actuator (for
AGC	example RF or IF receiver gain control) to
	prevent saturation at the external A/D
	converter. If so, configure as "external"
	AGC.
	Otherwise, an internal AGC will prevent
	Otherwise, an internal AGC will prevent saturation from occurring within the
	saturation from occurring within the
	saturation from occurring within the FPGA.
	saturation from occurring within the FPGA. 0 = internal
	saturation from occurring within the FPGA.

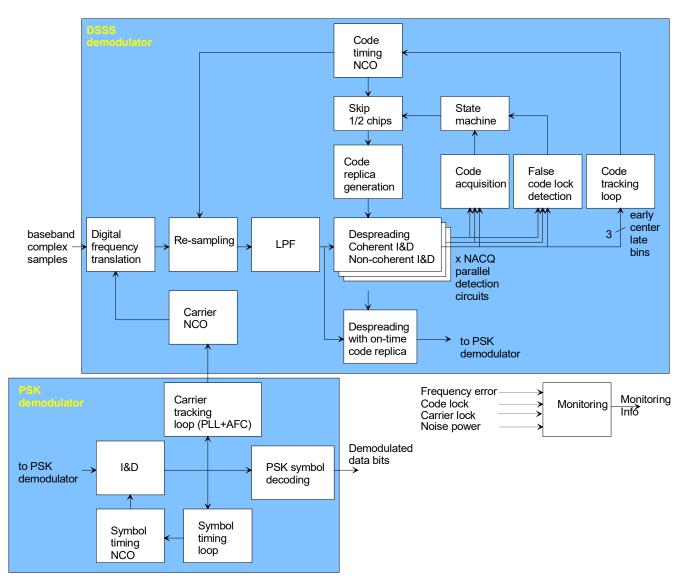
Phase ambiguity removal	The built-in PSK demodulator exhibits an inherent phase ambiguity (modulo 180 deg for BPSK, 90 deg for QPSK). Subsequent circuits such as FEC decoders can detect when the carrier tracking loop is locked onto the wrong carrier phase. By generating a 1 CLK-wide pulse, this demodulator will jump 180 deg(BPSK) or 90 deg (QPSK) to the next modulo. PHASE_AMBIGUITY_REMOVAL_STEP
-------------------------------	--

Monitoring

Carrier lock	Carrier tracking loop status, based on the
	measured RMS phase error. May wrongly
	indicate lock when no input signal and no
	input noise is present.
	CARRIER_LOCK_OUT
Code lock	CODE LOCK OUT
Carrier	Measured frequency error relative to the
frequency	nominal center frequency.
error	20-bit signed integer (2's complement
	representation) expressed as
	f _{error} * 2 ²⁰ / f _{symbol rate}
	· -
	CARRIER_FREQUENCY_ERROR(19:0)
Bit error rate	Monitors the BER (number of bit errors
	over 1,000,000 received bits) when the
	modulator is sending a PRBS-11 test
	sequence. Valid only when BER analyzer
	is synchronized.
	BER ERROR COUNT(31:0)
BER	'1' when synchronized with the received
analyzer	PRBS-11 test sequence.
synchronized	BER_SYNC
Byte error	One pulse for each byte error. Helpful in
	visualizing the bit error distribution
	(random? Burst?) with an oscilloscope.
	BYTE ERROR

Block Diagram: Receiver1

The ADC samples are first processed in the RECEIVER1.vhd component as illustrated above.


The AGC detects saturation or near saturation and adjust the gain control signal accordingly. This gain control is sent to either the internal or external gain control stage as per the configuration. The reaction time of the AGC loop is controlled by the AGC_RESPONSE parameter.

After DC bias removal, the real (IF) or complex (near baseband) input samples are frequency translated to baseband, as per the RECEIVER_CENTER_FREQ parameter.

The resulting baseband signal undergoes up to two types of low-pass filtering (CIC decimation and Half-Band filter), depending on the modulation bandwidth (or more specifically, depending on the ratio of the sampling rate over the chip rate). These low-pass filters are used for (a) image-rejection, in the case of IF inputs, (b) antialiasing prior to decimation.

Resulting baseband complex samples are further sent to the DSSS_DEMOD2.vhd component, as illustrated below.

Block Diagram: DSSS_Demod2

The *DSSS_DEMOD2.vhd* component conceptually comprises two distinct and mostly independent sections: (a) a spread-spectrum receiver (code acquisition and despreading) followed by (b) a regular PSK demodulator. Architecturally, this means that the PSK modulation could be replaced with other modulation types without much effort.

NACQ parallel code acquisition circuits are used for faster code acquisition. Each circuit consists of a code replica delay, despreading, coherent integration and dump (I&D) over a period of approximately half a symbol period, and non-coherent (i.e. power) I&D over a period of approximately N_NCID/2 symbols.

During the code acquisition phase, these parallel circuits are used to search NACQ code epochs spaced ½ a chip apart.

During the code tracking phase, three parallel circuits are used to compare the early/on-time/late code epochs for code tracking. The remaining parallel circuits are used to search for false code lock (a consistently better code epoch).

Software Licensing

The COM-1518SOFT is supplied under the following key licensing terms:

- 1. A nonexclusive, nontransferable license to use the VHDL source code internally, and
- 2. An unlimited, royalty-free, nonexclusive transferable license to make and use products incorporating the licensed materials, solely in bitstream format, on a worldwide basis.

The complete VHDL/IP Software License Agreement can be downloaded from http://www.comblock.com/download/softwarelicense.pdf

Configuration Management

The current software revision is 1.

Directory	Contents
/doc	Specifications, user manual, implementation documents
/src	.vhd source code, .ucf constraint files One component per file.
/sim	Test benches, Matlab .m signal generation
/bin	n/a

Key files:

Xilinx ISE project file: com-1518_ISE141.xise

VHDL development environment

The VHDL software was developed using the following development environment:

- (a) Xilinx ISE 14.1 with XST as synthesis tool
- (b) Xilinx ISE Isim as VHDL simulation tool

The entire project fits within a Xilinx Spartan-6 LX45. Therefore, the ISE project can be processed using the free Xilinx WebPack tooks.

Xilinx-specific code

The VHDL source code was written in generic VHDL with few low-level Xilinx primitives. No Xilinx CORE is used. The Xilinx primitives are:

- RAMB16 Sx Sx

VHDL software hierarchy

 com1518_	ISE141
xc6slx45-3	
	M1518 - Behavioral (src\com1518.vhd)
	EASURE_INTERVAL_001 - MEASURE_INTERVAL - Behavioral (src\MEAS
	CEIVER1_001 - RECEIVER1 - Behavioral (src\receiver1.vhd)
	INTERNAL_AGC_002 - MULT18X18SIGNED - BEHAVIOR (src\mult18)
·····	INTERNAL_AGC_003 - MULT18X18SIGNED - BEHAVIOR (src\mult18)
···· H.	POLAR3_001 - POLAR3 - Behavior (src\POLAR3.vhd)
÷ 🖫	Inst_AGC17 - AGC17 - behavioral (src\agc17.vhd)
÷ 🖫	BIAS_REMOVAL_001 - BIAS_REMOVAL - behavioral (src\bias_removi
÷ 🖌	DIGITAL_DC_001 - DIGITAL_DC2 - DIGITAL_DC_ARCH (src\digital_dc
) H	NC032_A - NC032 - behavioral (src/NC032.vhd)
⁴⁰	CIC_FILTER_001 - CIC - behavioral (src\CIC.vhd)
⁴ 8	CIC_FILTER_002 - CIC - behavioral (src\CIC.vhd)
	FIRHALFBAND3_11 - FIRHALFBAND3 - Behavioral (src\firhalfband3\
	FIRHALFBAND3_Q1 - FIRHALFBAND3 - Behavioral (src\firhalfband3)
···· ^H	Inst_SIM2OUTFILE1 - SIM2OUTFILE - Behavioral (sim/sim2outfile.vh
···· ¥	Inst_SIM2OUTFILE2 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vh
	Inst_SIM2OUTFILE2 - SIM2OUTFILE - Behavioral (sim/sim2outfile.vh
	SS DEMOD2 001 - DSSS DEMOD2 - behavioral (src\DSSS DEMOD\ds
÷ 1	DIGITAL_DC2_001 - DIGITAL_DC2 - DIGITAL_DC_ARCH (src\digital_d
····· ¥	NCO32_001 - NCO32 - behavioral (src\NCO32.vhd)
÷ 🙀	
···· 🖁	FIRHALFBAND3_12 - FIRHALFBAND3 - Behavioral (src\firhalfband3)
···· 1	FIRHALFBAND3_Q2 - FIRHALFBAND3 - Behavioral (src\firhalfband3
···· 📙	CODEGEN2_001A - CODEGEN2 - behavior (src\DSSS_DEMOD\codeg
···· ¥.	CODEGEN2_001B - CODEGEN2 - behavior (src\DSSS_DEMOD\codec DESDECAD_ID_00;; DESDECAD_ID_behavior (src\DSSS_DEMOD\de
	DESPREAD_ID_00x - DESPREAD_ID - behavior (src\DSSS_DEMOD\de
Уна Уна	POWER_002 - MULT18X18SIGNED - BEHAVIOR (src\mult18x18signer
	POWER_003 - MULT18X18SIGNED - BEHAVIOR (src\mult18x18signer
на Уна	CODE_TRACKING2_002 - CODE_TRACKING2 - CODE_TRACKING_AF
	ST_NCO32 - NCO32 - behavioral (src/NCO32.vhd)
÷	SYMBOL_TRACKING_003 - SYMBOL_TIMING_LOOP5 - BEHAVIOR (s
÷- 🔛	Inst_AGC17 - AGC17 - behavioral (src\agc17.vhd)
···· ¥a	DESPREAD_AGC_002 - MULT18X18SIGNED - BEHAVIOR (src\mult18)
	DESPREAD_AGC_003 - MULT18X18SIGNED - BEHAVIOR (src\mult18) CARRIER TRACK 003 - CARRIER TRACKING - behavioral (src\DSSS
÷ ¥.	
···· H	POLAR3_002 - POLAR3 - Behavior (src\POLAR3.vhd)
····· Ha	Inst_SIM2OUTFILE1 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vh Inst_SIM2OUTFILE2 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vh
¹⁰	Inst_SIM2OUTFILE3 - SIM2OUTFILE - Behavioral (sim/sim2outfile.vh
<mark>1</mark>	Inst_SIM2OUTFILE4 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vh
	Inst_SIM2OUTFILE5 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vh
	_TO_P8_CONVERSION_003 - PX_TO_P8_CONVERSION - behavioral (s
	R2_001 - BER2 - behavioral (src\BER2\ber2.vhd)
⊕ <mark>"H</mark>	
	SOF_TRACK8_001 - SOF_TRACK8 - BEHAVIOR (src\BER2\sof_track8;
⊞	Inst_PC_16 - PC_16 - BEHAVIOR (src\BER2\PC_16.vhd)
Ma 511	/I2OUTFILE_001 - SIM2OUTFILE - Behavioral (sim\sim2outfile.vhd)

The code is stored with one, and only one, entity per file as shown above.

Comparison with Previous Version

Key Improvements with respect to COM-1418 Direct-Sequence Spead-Spectrum Demodulator

- 2x faster: maximum chip rate is fclk/2
- Faster acquisition: parallel acquisition instead of sequential search.
- Symbol duration and alignment are independent of the spreading code period (2 independent tracking loops for code and symbol timing)
- Better performance through reduced dependencies between loops: code acquisition is less dependent on center frequency error.
- Independent AGCs before and after despreading.
- Phase ambiguity resolution under control of external FEC decoder.

ComBlock Ordering Information

COM-1518SOFT DSSS DEMODULATOR

ECCN: 5E001.b.4

MSS • 845-N Quince Orchard Boulevard• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com