
COM-1519 DIRECT-SEQUENCE SPREAD-SPECTRUM MODULATOR 60 Mchip/s

Key Features

- Direct Sequence Spread-Spectrum (DSSS) digital modulator.
- Programmable chip rates up to 60 Mchip/s.
- Spreading factor: 3 to 65535
- Spreading codes:
 - Gold sequences
 - Maximal length sequences
 - o Barker codes (length 11, 13).
 - GPS C/A codes.
- Symbol rate selection fully independent of chip rate. Alternatively, symbol can be aligned with code period.
- Code modulation: BPSK/QPSK with output spectral shaping filter: raised cosine square root filter with 20% rolloff. Filter can be bypassed.
- Built-in test features:
 - Pseudo-random bit stream generation (PRBS-11) for end-toend BER measurements
 - Unmodulated carrier
 - Precise additive white Gaussian noise
 - Frequency offset (Doppler fixed and/or sinusoidal)
- ComScope —enabled: key internal signals can be captured in real-time and displayed on host computer.
- Input for an external, higher-stability 10 MHz frequency reference.
- Connectorized 3"x 3" module for ease of prototyping. High-speed 98-pin PCIe connectors (left, right). Single 5V supply with reverse voltage and overvoltage

protection. Interfaces with 3.3V LVTTL logic.

Modulator connectivity

For the latest data sheet, please refer to the **ComBlock** web site: comblock.com/download/com1519.pdf. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to http://www.comblock.com/product_list.html.

Electrical Interface


Three basic output types are available on the right J9 connector:

- Dual 10-bit DACs, parallel I and Q samples, output sampling clock.
- Dual 14-bit DACs, multiplexed I and Q samples, input sampling clock.
- Dual 16-bit DACs, parallel I and Q samples, output sampling clock.

Power	4.75 – 5.25VDC. Terminal block. The		
Interface	maximum power consumption is 600mA.		

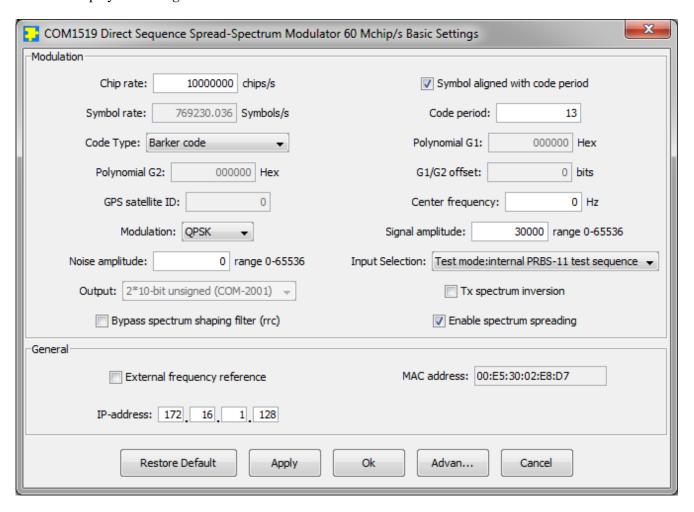
Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Block Diagram

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

USB


or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1519 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1519 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center "Advanced" configuration or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

www.comblock.com/download/Mac_Telefence.pdf

All control registers are read/write.

Definitions for the <u>Control registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). It is automatically loaded up at power up. All control registers are read/write.

Parameters	Configuration
Processing clock f _{clk_tx}	Modulator processing clock. Also serves as DAC sampling clock
	20-bit unsigned integer expressed as $\mathbf{f}_{\text{clk_tx}} * 2^{20} / 300 \text{MHz}$.
	120 MHz maximum.
	20 MHz recommended minimum
	REG0 = bits 7-0 (LSB)
	REG1 = bits 15 - 8 (MSB)
	REG2(3:0) = bits 19 - 16 (MSB)
Internal/External frequency reference	0 = internal. Use the internal 60 MHz clock (from the USB PHY) as frequency reference.
	1 = external. Use the 10 MHz clock externally supplied through the J7 SMA connector as frequency reference.
	REG2(7)
Chip rate	The modulator chip rate is in the
f _{chip} rate tx	form $\mathbf{f}_{\text{chip rate tx}} = \mathbf{f}_{\text{clk_tx}} / 2^n$ where n ranges from 1 (2 samples per chip) to 15 (chip rate = $\mathbf{f}_{\text{clk_tx}} / 32768$).
	n is defined in REG3(3:0)

Code period	In chips.
	Valid range 3 – 65535
	Can be less than the natural length
	of the selected code. In which
	case, the code is truncated.
	REG4: LSB
	REG5: MSB
Code selection	1 = Gold code (G1/G2 software
Code selection	selection)
	2 = Maximal length sequence (G1
	software selection)
	3 = Barker code (lengths 11 or 13
	only)
	4 = GPS C/A code
	REG6(3:0)
Gold sequence /	24-bit. Describes the taps in the
Maximal Length Sequence generator	linear feedback shift register 1:
polynomial G1	Bit 0 is the leftmost tap (2^0 in the
polynomia or	polynomial). The largest non-zero
	bit is the polynomial order n. n
	determines the code period 2 ⁿ –1.
	Example: $G1 = 1 + x + x^4 + x^5 + x^6$ is
	represented as 0x000039
	This field is used only if Gold
	code or Maximal length sequences
	are selected.
	REG7 = LSB
	REG8
	REG9 = MSB
Gold code generator	24-bit. Describes the taps in the
polynomial G2	linear feedback shift register 2:
	Same format as G1 above.
	This field is used only if Gold
	codes are selected.
	REG10 = LSB
	REG11
Gold code G1/G2	REG12 = MSB
phase offset	A Gold code is generated by adding two maximal length
r-mos orizon	sequences (as defined by their
	generator polynomials G1 and
	G2). A set of orthogonal Gold
	codes can be created by changing
	the phase offset between the two
	maximal length sequences.
	REG35 (LSB) – REG37 (MSB)
GPS satellite ID	GPS signals from different
	satellites are designated by a PRN
	signal number in the range $1 - 37$.
	This field is used only if GPS C/A
	codes are selected.
	REG10(5:0)

LSB = Least Significant Byte MSB = Most Significant Byte

Symbol rate f _{symbol_rate}	The symbol rate can be set independently of the spreading code period. In this case, set REG13-16 such that fsymbol_rate * 2 ³² / fclk_tx REG13 = LSB REG14 REG15 REG16 = MSB Alternatively, symbols can be aligned with the spreading code period. In this case, REG16(7) as '1'. REG13-15 are ignored.
Digital Signal gain	16-bit amplitude scaling factor for the modulated signal. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Therefore, we recommend checking for saturation at the D/A converter when changing either the symbol rate or the signal gain. (see status registers SREG8) REG17 = LSB REG18 = MSB
Additive White Gaussian Noise gain	16-bit amplitude scaling factor for additive white Gaussian noise. Because of the potential for saturation, please check for saturation at the D/A converter when changing this parameter. REG19 = LSB REG20 = MSB
Modulation type	Modulation type before applying the direct-sequence spreading. Note: the modulation symbol transitions are not necessarily aligned with the chip transitions. 0 = BPSK 1 = QPSK REG21(5:0)
Spectrum inversion	Invert Q bit. (Inverts the modulated spectrum only, not the subsequent frequency translation) $0 = \text{off}$ $1 = \text{on}$ REG21(6)
Ouput spectrum shaping filter enabled	Enables/Disables raised cosine square root output spectrum shaping filter. 0 = enabled 1 = bypassed REG21(7)

	Г 1	
Input selection / format, test	Select the origin of the modulator input data stream.	
modes	1 = from left J6 connector (Many comblocks), 1-bit serial	
	2 = high-speed USB, 8-bit parallel	
	3 = LAN/TCP-IP, port 1024 (through	
	Ethernet adapter), 8-bit parallel	
	4 = test sequence: internal generation of 2047-bit periodic pseudo-random bit sequence as modulator input. (overrides external input bit stream).	
	5 = test sequence: unmodulated carrier. This helps checking the follow-on RF modulator.	
	8-bit parallel input bytes are transmitted MSb first.	
	Test sequences override external input bit stream.	
	REG22(2:0)	
Spreading	Enable/Disable spectrum spreading.	
	0 = disabled	
	1 = enabled	
Enable test	REG22(3) Enable (1)/Disable (0) test points on J6	
points	connector	
	REG22(4)	
Transmit sync word	Insert periodic 32 bit synchronization sequence to assist the demodulator in	
	synchronizing and recovering	
	ambiguities. The unique word is 5A 0F	
	BE 66, transmitted MSb first. 2048 data symbols are transmitted between	
	successive unique words. The unique	
	word is using a simplified BPSK	
	modulation, irrespective of the	
	modulation type. 0 = disabled	
	1 = periodically insert a sync word.	
	REG22(5)	
Reserved	REG22(7) must be 0	
Output Center	Fine tuning of center frequency.	
frequency	Typically 0 Hz.	
$(\mathbf{f_{c_{-}tx}})$	32-bit signed integer (2's complement representation) expressed as	
	$\mathbf{f_{c_tx}} * 2^{32} / \mathbf{f_{clk_tx}}$	
	For a clean output waveform, we	
	recommend keeping the maximum frequency (center frequency + ½ symbol	
	rate) below 1/10 th of the processing	
	clock f _{clk_tx} .	
	Notes as the AWCN	
	Note: as the AWGN noise samples are not frequency translated, noise tests	
	not inequality duffillated, fielde tests	

	should only be performed while the	
	center frequency translation is smaller	
	than the modulation bandwidth.	
	REG23: LSB	
	REG24	
	REG25	
	REG26: MSB	
Sinusoidal	In addition to the fixed frequency offset	
frequency	above, a sinusoidal frequency offset can	
offset	be generated to mimic Doppler rate in	
	highly mobile applications.	
	g,	
	This offset is characterized by two	
	parameters: amplitude and period.	
	parameters, ampireade and period.	
	The amplitude (a frequency) is	
	expressed as $\mathbf{f}_{\mathbf{c}, \mathbf{amplitude}} * 2^{32} / \mathbf{f}_{\mathbf{clk}, \mathbf{tx}}$	
	in the following control registers:	
	REG27: LSB	
	REG28	
	REG29	
	REG29 REG30: MSB	
	KEG30. MSB	
	The period is expressed as	
	The period is expressed as	
	2 ³² /(f _{elk_tx} *T)	
	in the following control registers:	
	REG31: LSB	
	REG32 REG33	
	REG33 REG34: MSB	
Notes als Issue		
Network Interf		
Parameters ID address	Configuration	
IP address (when	4-byte IPv4 address.	
connected to	Example : 0x AC 10 01 80 designates	
Gbit Ethernet	address 172.16.1.128	
	The new address becomes effective	
PHY like	immediately (no need to reset the	
COM-5102,	ComBlock).	
COM-5104)	REG41: MSB	
	REG42	
	REG43	
	REG44: LSB	

(Re-)Writing to the last control register REG44 is recommended after a configuration change to enact the change.

Monitoring

Status Registers

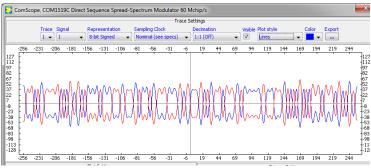
Parameters	Monitoring	
Hardware	At power-up, the hardware platform	
self-check	performs a quick self check. The result is	
Self-check		
	stored in status registers SREG0-6	
	Properly operating hardware will result	
	in the following sequence being	
	displayed:	
	SREG0/1/2/3/4/5/6/7 = 2C F1 95 xx 0F	
	01 24	
Saturation	Denotes saturation in the transmit path.	
	SREG8(0)	
	ection Monitoring	
Parameters	Monitoring	
LAN PHY ID	Expect 0x22 when LAN adapter is	
	plugged in.	
	SREG7	
TCP-IP	Bit $0 = port 1028 \text{ (M&C)}$ connected	
connections	Bit 1 = port 1024 (data) connected	
	1 for connected, 0 otherwise	
	SREG9(1:0)	
MAC address	Unique 48-bit hardware address (802.3).	
	In the form SREG17:SREG18:SREG19:	
	:SREG22	
SNR calibrati	on	
Parameters	Monitoring	
Measured	SREG11(LSB)	
modulated	SREG12	
signal power	SREG13(MSB)	
Measured	SREG14(LSB)	
AWGN	SREG15	
power	SREG16(MSB)	
(Noise	`	
bandwidth is		
twice the		
modulated		
spread-		
spectrum		
signal		
bandwidth)		

Digital Test Points

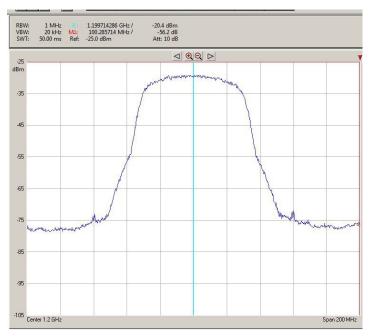
Enabled if REG22(4) = '1', high-impedance otherwise.

Test Point	Definition	
J6 connector pin A31	Start of periodic spreading code	
J6 connector pin A32	Spreading sequence	
J6 connector pin A33	Chip rate	
J6 connector pin A34	Symbol rate	
J6 connector pin A35	PRBS-11 (test sequence) start of	
	sequence.	
DONE	FPGA DONE pin. High	
	indicates proper FPGA	
	configuration	

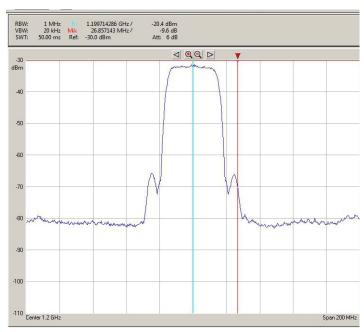
ComScope Monitoring

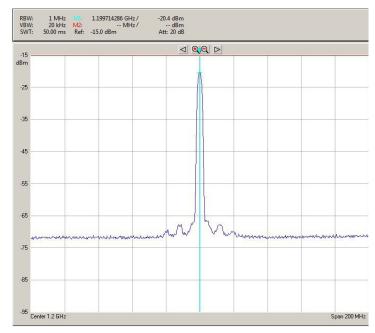

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-1519 signal traces are defined as follows:

Trace 1	Format	Nominal	Capture
signals		sampling	length
		rate	(samples)
1: baseband	8-bit	f _{clk_tx}	512
modulated I- channel	signed		
Trace 2	Format	Nominal	Capture
signals		sampling rate	length (samples)
1: baseband modulated Q- channel	8-bit signed	f _{clk_tx}	512
Trace 3	Format	Nominal	Capture
signals		sampling rate	length (samples)
N/A			
Trigger	Format		
	Format		


Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk_tx} processing clock as realtime sampling clock.

In particular, selecting the $\mathbf{f}_{\text{clk}_{\text{tx}}}$ processing clock as real-time sampling clock allows one to have the same time-scale for all signals.


The ComScope user manual is available at www.comblock.com/download/comscope.pdf.


ComScope Window Sample: showing the modulated output waveform: blue for I-channel, red for Q-channel.

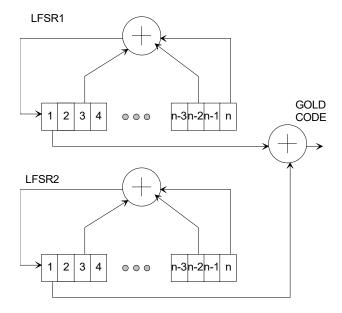
Output spectrum (after D/A conversion and RF modulation): 59.999 Mchips/s

Output spectrum (after D/A conversion and RF modulation): 30 Mchips/s

Output spectrum (after D/A conversion and RF modulation): 2 Mchips/s

Operation

Spreading codes


Spreading codes are pseudo random sequences which falls within the following categories:

- Gold sequences, for best autocorrelation properties
- Maximal length sequences
- Barker codes (length 11, 13)
- GPS C/A codes.

The same spreading code is used on both the inphase (I) and quadrature (Q) channels.

Gold sequences

Gold sequences are generated using two linear feedback shift registers LFSR1 and LFSR2 as illustrated below:

The code period is 2ⁿ-1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its two generator polynominals. The highest order is n. The generator polynominals are user programmable.

A few commonly used Gold sequences are listed below:

$$n = 5 \text{ (length 31):}$$

$$G1 = 1 + x^2 + x^5 \text{ (0x000012)}$$

$$G2 = 1 + x + x^2 + x^4 + x^5 \text{ (0x00001B)}$$

$$n = 6 \text{ (length 63):}$$

$$G1 = 1 + x^5 + x^6 \text{ (0x0000030)}$$

$$G2 = 1 + x + x^4 + x^5 + x^6 \text{ (0x000039)}$$

$$n = 7 \text{ (length 127):}$$

$$G1 = 1 + x^3 + x^7 \text{ (0x0000044)}$$

$$G2 = 1 + x + x^2 + x^3 + x^4 + x^5 + x^7 \text{ (0x000005F)}$$

$$n = 9 \text{ (length 511):}$$

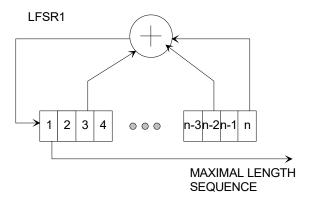
$$G1 = 1 + x^5 + x^9 \text{ (0x0000110)}$$

$$G2 = 1 + x^3 + x^5 + x^6 + x^9 \text{ (0x0000134)}$$

$$n = 10 \text{ (length 1023):}$$

$$G1 = 1 + x^7 + x^{10} \text{ (0x0000240)}$$

$$G2 = 1 + x^2 + x^7 + x^8 + x^{10} \text{ (0x00002C2)}$$


$$n = 11 \text{ (length 2047):}$$

$$G1 = 1 + x^9 + x^{11} \text{ (0x0000500)}$$

$$G2 = 1 + x^3 + x^6 + x^9 + x^{11} \text{ (0x0000524)}$$

Maximal length sequences

Maximal length sequences are generated using one linear feedback shift register LFSR1 as shown below:

The code period is 2ⁿ-1, where n is the number of taps in the shift register. The LFRSa are initialized to all 1's at the start of each period. The LFRSs will generate all possible n-bit combinations, except the all zeros combination.

Each sequence is uniquely described by its generator polynominal. The highest order is n. The generator polynominal is user programmable.

A few commonly used maximal length sequences are listed below:

$$n = 4 \text{ (length 15):}$$

$$G1 = 1 + x + x^4 \text{ (0x000009)}$$

$$n = 5 \text{ (length 31):}$$

$$G1 = 1 + x^2 + x^5 \text{ (0x000012)}$$

$$n = 6 \text{ (length 63):}$$

$$G1 = 1 + x + x^6 \text{ (0x0000021)}$$

$$n = 7 \text{ (length 127):}$$

$$G1 = 1 + x + x^7 \text{ (0x0000041)}$$

$$n = 8 \text{ (length 255):}$$

$$G1 = 1 + x^2 + x^3 + x^4 + x^8 \text{ (0x000008E)}$$

$$n = 9 \text{ (length 511):}$$

$$G1 = 1 + x^4 + x^9 \text{ (0x000108)}$$

$$n = 10 \text{ (length 1023):}$$

$$G1 = 1 + x^3 + x^{10} \text{ (0x000204)}$$

Barker Codes

11 bit Barker code: 101 1011 1000, or 0x5B8 13 bit Barker code: 1 1111 0011 0101, or 0x1F35

GPS C/A Codes

GPS C/A codes are modified Gold codes of length 1023 with generator polynomials:

G1 =
$$1 + x^{3} + x^{10}$$

G2 = $1 + x^{2} + x^{3} + x^{6} + x^{8} + x^{9} + x^{10}$

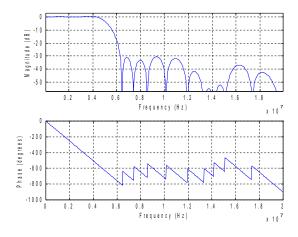
The G2 generator output is slightly modified so as to create a distinct code for each satellite. The G2 output is generated by summing two specific taps of the shift register. In the case of Satellite ID 1 for example, taps 2 and 6 are summed.

The G2 output taps are listed below:

The G2 output taps are listed below:			
Satellite	G2	Satellite ID /	G2 output
ID/	output	GPS PRN	taps selection
GPS	taps	Signal	_
PRN	selectio	Number	
Signal	n		
Number			
1	2 xor 6	21	5 xor 8
2	3 xor 7	22	6 xor 9
3	4 xor 8	23	1 xor 3
4	5 xor 9	24	4 xor 6
5	1 xor 9	25	5 xor 7
6	2 xor 10	26	6 xor 8
7	1 xor 8	27	7 xor 9
8	2 xor 9	28	8 xor 10
9	3 xor 10	29	1 xor 6
10	2 xor 3	30	2 xor 7
11	3 xor 4	31	3 xor 8
12	5 xor 6	32	4 xor 9

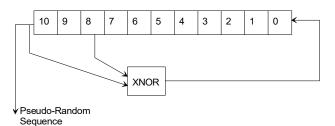
13	6 xor 7	33	5 xor 10
14	7 xor 8	34	4 xor 10
15	8 xor 9	35	1 xor 7
16	9 xor 10	36	2 xor 8
17	1 xor 4	37	4 xor 10
18	2 xor 5		
19	3 xor 6		
20	4 xor 7		

Compliant with "Navstar GPS Space Segment / Navigation User Interfaces" specifications, ICD-GPS-200, Revision C. IRN-200C-004, 12 April 2000.


Data Rate

The symbol rate is set independently of the chip rate. In order to get the best spread-spectrum processing gain at the receiver, it is important to select a spreading code period of length greater or equal to the symbol period. In such cases, the processing gain is the ratio of symbol rate over chip rate.

Filter Response


This module is configured at installation with a 20% rolloff filter.

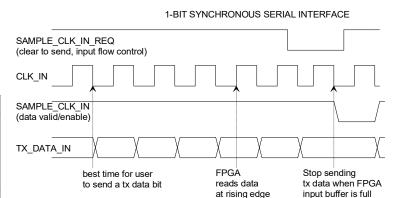
Filter Response (20% rolloff)

Pseudo-Random Bit Stream (Test Pattern)

A periodic pseudo-random sequence can be used as modulator source instead of the input data stream. A typical use would be for end-to-end bit-error-rate measurement of a communication link. The sequence is 2047-bit long maximum length sequence generated by a 11-tap linear feedback shift register:

Interfaces

Several interface types are supported through multiple firmware options. All firmware versions can be downloaded from www.comblock.com/download.html


Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 1.2 seconds

Option	DAC Type	Input
–A	2*10-bit	USB or LAN (TCP-IP)
	unsigned	
	(COM-2001)	
	26 Mchips/s	
	max	
-C	2*16-bit signed	USB or LAN (TCP-IP)
	(COM-3504)	
	60 Mchips/s	
	max	
-G	2*12-bit signed	USB or LAN (TCP-IP)
	(COM-2802)	
	30 Mchips/s	
	max	
-D	2*10-bit	USB or 1-bit synchronous
	unsigned	serial
	(COM-2001)	
	26 Mchips/s	
	max	
-H	2*12-bit signed	USB or 1-bit synchronous
	(COM-2802)	serial
	30 Mchips/s	
	max	

Inputs

1-bit synchronous serial

The input data stream can be injected through the left (J6) connector. The timing diagram is show below:

Maximum input clock rate: 125 MHz.

TCP-IP

The input data stream can also be transmitted over a TCP-IP network connection. This requires an additional COM-5102 plug-in Ethernet adapter. In this case, the modulator acts as a TCP server, waiting for connection from a remote client at port 1024. A static IP address is assigned by the user through the graphical user interface or control registers.

It is the client's responsibility to send enough data to the modulator so as to prevent underflow conditions. The client's strategy is thus to write data to a standard TCP socket as fast as possible and let the TCP protocol regulate the data flow.

At the modulator, received TCP bytes are sent serially, most-significant bit first.

USB

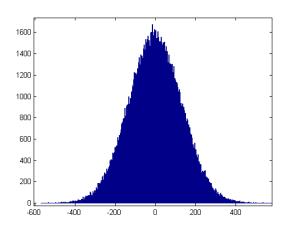
The input data stream can also be transmitted over a USB 2.0 cable, together with monitoring and control information. USB data transfer is only supported through the J1 HIGH-SPEED mini type AB connector. The other USB port labeled DEVelopment can be used for Monitoring and Control only. It cannot convey payload data.

This modulator acts as a USB device.

See

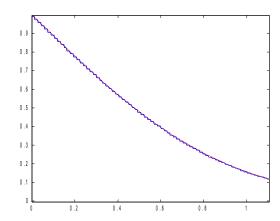
<u>http://comblock.com/download/USB20_UserManual.pdf</u> for details.

Additive White Gaussian Noise (Test Mode)

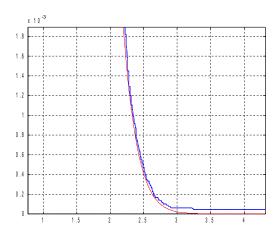

To help simulating link impairements, an accurate additive white Gaussian noise is digitally generated.

The AWGN has the following properties:

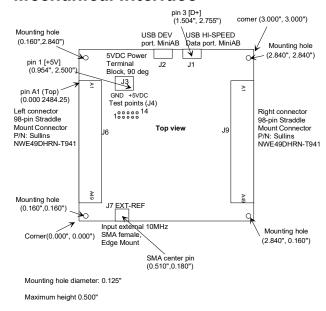
- random distribution up to \pm 4.5 σ (4.5*standard deviation).
- resolution: 16 bits
- periodicity greater than 2³² samples.
- bandwidth equals to twice the chip rate. Its wideband spectrum tends towards a $\sin(x)/x$ function but can be considered flat within the spread-spectrum bandwidth.


In order to help with the SNR calibration process, the noise power and the modulated signal power are measured and reported in the status registers.

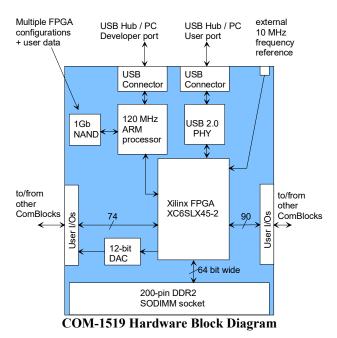
The resulting noise sample distribution is shown below:


Noise sample histogram (130K samples)
Mean = 0.
Standard deviation = 128

The plots below illustrate how accurate the noise generation is, by comparing the erfc function (red) with the AWGN normalized distribution (blue)

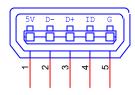

Theoretical erfc function (red) vs actual AWGN normalized distribution measurements (blue). Range 0-1, 130K samples.

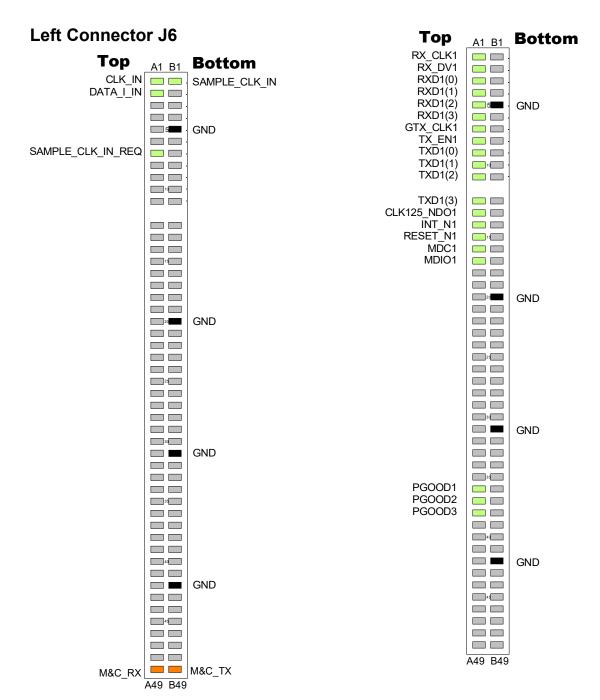
The theoretical curve and the measured statistical distribution of noise samples are nearly superposed.


Theoretical erfc function (red) vs actual AWGN normalized distribution measurements (blue). Range 1-4, 130K samples.

Mechanical Interface

Schematics

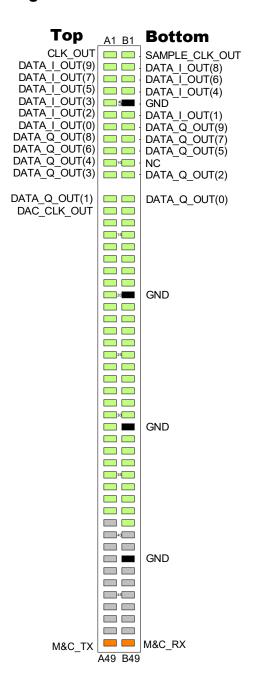

The board schematics are available on-line at http://comblock.com/download/com_1500schematics.pdf

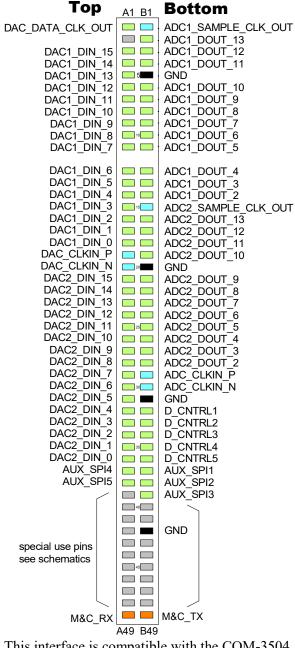


Pinout

USB

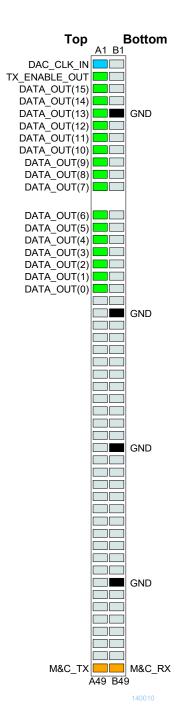
The USB port labeled HIGH-SPEED is equipped with a mini type AB connector. (G = GND).




This interface is compatible with Comblock modules with 1-bit synchronous serial interface. . (-D, -H firmware)

This interface is compatible with the COM-5102/COM-5401 10/100/1000 Mbps Ethernet PHY . (-A, -C firmware)

Right Connector J9



This interface is compatible with the COM-2001 dual DACs. (-A, -D firmware)

This interface is compatible with the COM-3504 dual Analog<->Digital Conversions.

(-C firmware)

This interface is compatible with the COM-2802 DDS modulator running at 480 MHz (x8 interpolation, 60 MSamples/s at baseband, 0-200 MHz IF out)

(-G, -H firmware)

I/O Compatibility List

(not an exhaustive list)

Left connector
COM-5102 Gigabit Ethernet + HDMI interface
COM-1500 FPGA + ARM development platforms
COM-1509 Error correction codec
COM-7002 Turbo Code Error correction encoder
COM-8001 Arbitrary waveform generator 256MB
COM-5003 TCP-IP / USB Gateway
COM-5404 IP router
Right connector
-A, -D firmware
COM-2001 digital-to-analog converter (baseband).
COM-1518 DSSS Demodulator 60 Mchips (back to
back)
COM-1524 Channel emulator (Doppler, delay, fading,
noise)
-C firmware
COM-3504 Dual Analog <-> Digital Conversions
-G, -H firmware
COM-2802 DDS modulator

Configuration Management

This specification document is consistent with the following software versions:

- COM-1519 FPGA firmware: Version 6 and above.
- ComBlock Control Center graphical user interface: Revision 3.08n and above.

The option and version of the FPGA configuration currently active can be read from the ComBlock Control Center in the configuration panel (advanced).

ComBlock Ordering Information

COM-1519

Direct-sequence spread-spectrum modulator 60 Mchips/s.

ECCN 5A001.b.3

MSS • 845-N Quince Orchard Boulevard• Gaithersburg, Maryland 20878-1676 • U.S.A.

Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com