

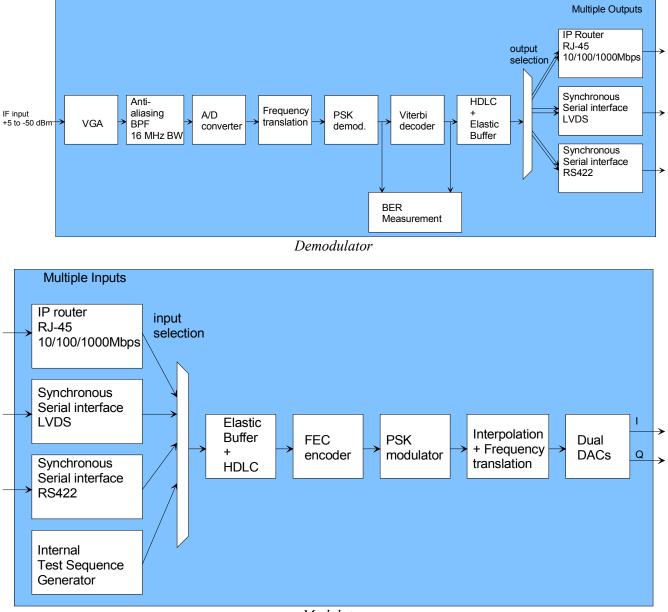
LOW-POWER PSK MODEM + VITERBI FEC + TCP SERVER (COM-1704) or IP ROUTER (COM-1705)

Key Features

- Full duplex integrated PSK modem, including modulation, demodulation, convolutional error correction, scrambling, HDLC framing and network interface.
- Programmable symbol rates 2.4Ksymbols/s up to 14 Msymbols/s.
- Analog/IF interface:
 - dual I/Q baseband inputs, 1Vpp differential.
 - 70 MHz IF input:
 -50 to +5 dBm, 50 Ohm
 - 140 MHz IF input:
 -50 to +5 dBm, 50 Ohm
 - Outputs: dual I/Q baseband outputs, 2Vpp differential, 0.5V common mode.
- Convolution error correction, rates 1/2, 2/3, 3/4, 5/6 and 7/8.
- Serial HDLC to transmit empty frames over the synchronous link when no payload data is available.
- V.35 scrambling to randomize the modulated data stream.
- Data interface:
 - 10/100 Ethernet LAN with built-in TCP server (COM-1704) or IP router (COM-1705)
 - USB 2.0
 - Synchronous serial interfaces: RS-422, LVDS
- Small size (3"x3"x0.3") and low power (2W)

- Modulation: BPSK/QPSK/OQPSK with output spectral shaping filter: raised cosine square root filter with 20% rolloff.
- Demodulator acquisition and tracking threshold: -1 dB Eb/No (2dB Eb/No when coded with rate ½ FEC).
- Built-in test features: BER tester, SNR measurement, unmodulated carrier

transmitter, ComScope capture and display of key internal signals.


- Internal TCXO or input for an external, higher-stability 10 MHz frequency reference (to be specified at the time of order)
- Supply voltage (to be specified at the time of order)
 - Direct 3.3V or
 - 5V supply with reverse voltage and overvoltage protection.

For the latest data sheet, please refer to the **ComBlock** web site: <u>comblock.com/download/com1705.pdf</u>. These specifications are subject to change without notice.

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2014 Issued 6/12/2014 For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Block Diagram

Modulator

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

- USB
- TCP-IP/LAN,

Other connection types are also available through adjacent ComBlocks.

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1704/1705 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the \checkmark *Detect* button, next click to highlight the COM-1704/1705 module to be configured, next click the Settings button to display the *Settings* window shown below.

COM1705 LOW-POWER PSK MODEM + VITERBI FEC + IP ROUTER Basic Settings
Modulation & FEC encoding Demodulation & FEC decoding IP network
Nominal symbol rate (S/s): 2000000 [<14MS/s] Modulation: QPSK -
Input center frequency: 7000000 Hz Frequency acquisition range: 0 Hz
AGC response time: 10 [0-14] Spectrum inversion V Detect sync word
✓ FEC decoding Differential decoding Viterbi FEC decoding: K=7, R=1/2, Intelsat
▼ V.35 descrambling ▼ HDLC decoding Input: Analog real (IF undersampling) ▼
Output: LAN IP router (8-bit parallel)
Restore Default Apply Ok Advan Cancel
COM1705 LOW-POWER PSK MODEM + VITERBI FEC. + IP ROUTER Basic Settings

COM1/05 LOW-POWER PSK MODEM + VITERBI FEC	. + IP KOUTEK Basic Settings
Modulation & FEC encoding Demodulation & FEC decoding	IP network
Symbol rate (S/s) 1999999.9 [<20MS/s]	Transmit serial bit rate (bits/s) 0
DAC Sampling Rate (Hz): 63999996.2	Modulation: QPSK 👻
Signal gain: 30000 [<65536]	External transmitter gain: 0 [<1024]
Output center frequency: 0 Hz	👽 Sync word 📄 Spectrum inv. 👽 Ch. filter
FEC encoding 📄 Differential encoding	Convolutional FEC encoding: K=7, R=1/2, Intelsat
V.35 scrambling V.35 scrambling	Input: IAN IP router (8-bit parallel)
TX_ENB RX_TXN	
Restore Default Apply	Ok Advan Cancel

COM1705 LOW-POWER PSK MODEM + VITERBI FEC + IP ROUTER Basic Settings	×	
Modulation & FEC encoding Demodulation & FEC decoding IP network		
MAC address: 00:00:00:00:00		
IP-address: 172 16 1.128		
Subnet mask: 255 255 0		
Gateway address: 172 16 1 2		
🦳 Forward IP multicast 📄 Forward IP directed broadcast 📄 Forward IP broadcast		
Restore Default Apply Ok Advan Cancel		

IMPORTANT NOTE (6/12/14):

Due to limited space within the FPGA, several features are not available in the modem (transmit + receive) firmware version, but only in the demodulator-only version:

- BER tester

- High-speed USB 2.0 port for modem data transfer
- Comscope.

Demodulator-only firmware will be released shortly.

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center "Advanced" configuration or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Definitions for the <u>Control registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). It is automatically loaded up at power up. All control registers are read/write.

Transmitter		
Parameters	Configuration	
Input selection /	Select the origin of the transmitter input data stream.	
format, test modes	0 = USB 2.0 (8-bit)	
modes	1 = RJ-45 LAN IP (8-bit) 2 = 1-bit synchronous serial LVDS	
	3 = 1-bit synchronous serial RS-422	
	4 = internal PRBS-11 test sequence	
	5 = internal unmodulated carrier	
	8-bit parallel input bytes are transmitted MSb first	
	MS0 first.	
	REG19(3:0)	
TX_ENB	Transmit enable digital control on J4/A17	
	Typically used to turn on/off an external	
	power amplifier.	
RX TXN	REG19(4) Digital control on J4/B17. Typically	
KA_IAN	used to fast switch a half-duplex external	
	transceiver between receive and transmit	
	modes.	
	REG19(5)	
FEC convolution		
Parameters	Configuration	
Constraint	0001 = (K = 7, R = 1/2, Intelsat)	
length K and rate R	0010 = (K = 7, R=2/3, Intelsat)	
	0011 = (K = 7, R = 3/4, Intelsat)	
	0100 = (K = 7, R = 5/6, Intelsat)	
	0101 = (K = 7, R = 7/8, Intelsat)	

	1011 = (K = 7, R = 1/2, CCSDS)
	1100 = (K = 7, R=2/3, CCSDS/DVB)
	1101 = (K = 7, R=3/4, CCSDS/DVB)
	1110 = (K = 7, R = 5/6, CCSDS/DVB)
	1111 = (K = 7, R = 7/8, CCSDS/DVB)
	REG12(4:1)
Differential	Differential encoding is useful in
Encoding	removing phase ambiguities at the PSK demodulator, at the expense of doubling the bit error rate.
	When enabled, the differential decoding
	must be enabled at the receiving end.
	There is no need to use the differential encoding to remove phase ambiguities at the PSK demodulator when the Viterbi decoder and HDLC decoder are enabled.
	0 = disabled
	1 = enabled
	REG12(5)
Bypass FEC	0 = encoding enabled
encoding	1 = bypass
	REG12(6)
V.35/Intelsat IESS 308	0 = enabled
scrambling	1 = bypass
before FEC encoding	REG12(7)
HDLC	0 = enabled
encoding	1 = bypass
	REG12(0)
PSK Modulate	
Parameters	Configuration
Processing clock	Modulator processing clock. Also serves as DAC sampling clock.
f _{clk_tx}	20-bit unsigned integer expressed as $f_{clk_tx} \approx 2^{20} / 234$ MHz when 26MHz frequency reference, or
	$\mathbf{f}_{\mathbf{clk}_{\mathbf{tx}}} * 2^{20} / 230 \mathrm{MHz} \mathrm{when} 10 \mathrm{MHz}$
	$f_{clk_tx} \approx 2^{20} / 230MHz$ when 10MHz frequency reference.
	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB)
	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB) REG21 = bits 15 - 8 (MSB)
Symbol rate	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB) REG21 = bits 15 - 8 (MSB) REG22(3:0) = bits 19 - 16 (MSB)
Symbol rate f _{symbol} rate tx	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB) REG21 = bits 15 - 8 (MSB) REG22(3:0) = bits 19 - 16 (MSB) The modulator symbol rate is in the form $f_{symbol rate tx} = f_{clk_tx} / 2^n$
	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB) REG21 = bits 15 - 8 (MSB) REG22(3:0) = bits 19 - 16 (MSB) The modulator symbol rate is in the form $f_{symbol rate tx} = f_{clk_tx} / 2^n$ where n ranges from 1 (f_{clk_tx} is twice the
	frequency reference. Recommended range: 45-90 MHz REG20 = bits 7-0 (LSB) REG21 = bits 15 - 8 (MSB) REG22(3:0) = bits 19 - 16 (MSB) The modulator symbol rate is in the form $f_{symbol rate tx} = f_{clk_tx} / 2^n$

	n is defined in DEC 22(2.0)
Madalatian	n is defined in REG23(3:0)
Modulation	0 = BPSK
type	1 = QPSK
	2 = OQPSK
	REG7(5:0)
Spectrum	Invert Q bit. This is helpful in
inversion	compensating any frequency spectrum
	inversion occurring in a subsequent RF
	frequency translation.
	0 = off
	1 = on
	REG7(6)
Channel filter	0 = enable the spectrum shaping filters
enabled	(root raised cosine, interpolation)
chaolea	· · ·
	1 = bypass the spectrum shaping filters.
	(special use in applications when a root
	raised cosine filter is not used in the
	demodulator.)
	REG7(7)
Transmit sync	Insert periodic 32 bit synchronization
word	sequence to assist the demodulator in
	synchronizing and recovering
	ambiguities. The unique word is 5A 0F
	BE 66, transmitted MSb first. 2048 data
	symbols are transmitted between
	successive unique words. The unique
	word is using a simplified BPSK
	modulation, irrespective of the
	· •
	modulation type.
	0 = disabled
	1 = periodically insert a sync word.
~	REG19(7)
Signal gain	Signal level.
	16-bit unsigned integer.
	The maximum level should be adjusted
	to prevent saturation. The settings may
	vary slightly with the selected symbol
	rate. Therefore, we recommend <u>checking</u>
	for saturation at the D/A converter when
	changing either the symbol rate or the
	signal gain.
	REG17 = bits 7-0 (LSB)
	REG18 = bits 15-8 (MSB)
Externel	
External	10-bit value for analog gain control
transceiver tx	TX_GAIN_CNTRL1 (J4 pin A15)
gain control	REG3 = LSB
	REG4(1:0) = MSbs
Output Center	Frequency translation.
frequency	32-bit signed integer (2's complement
(f _{cout})	representation) expressed as
	$\mathbf{f}_{\text{cout}} * 2^{32} / \mathbf{f}_{\text{clk tx}}$
	REG8 = bits 7-0 (LSB)
	REG9 = bits 15 - 8
	REG10 = bits 23 - 16
	REG10 = bits $23 = 10$ REG11 = bits $31 - 23$ (MSB)
	$1 \times 1011 = 0105 51 = 25 (1015D)$

LSB = Least Significant Byte MSB = Most Significant Byte

Serial tx bit rate	Set the nominal input bit rate in order to supply a regular bit clock to the user data source. Must be consistent with the modulator symbol rate, modulation type, FEC rate, HDLC overhead (when enabled). When HDLC is disabled, this field MUST be set to be at least slightly greater than the transmitter throughput (or else an underflow condition will occur). f _{input bit rate tx} * 2^{32} / f _{clk_rx} REG13 = bits 7-0 (LSB) REG14 = bits 15 - 8 REG15 = bit 23 - 16 REG16 = bit 31 - 23 (MSB)
-----------------------	---

Receiver	
PSK demodulator	
Parameters	Configuration
Processing clock	The demodulator processing clock also serves as A/D converter sampling clock. It can be generated within the FPGA or externally. Baseline f _{elk_rx} = 80 MSamples/s (for complex input, 140 MHz IF undersampling), or 56 MSamples/s (for 70 MHz IF undersampling)
Nominal symbol rate f _{symbol} rate rx	The demodulator nominal symbol rate is in the form $f_{symbol rate rx} * 2^{32} / f_{clk_rx}$ REG25 = bits 7-0 (LSB) REG26 = bits 15 - 8 REG27 = bit 23 - 16 REG28 = bit 31 - 23 (MSB)
Nominal Center frequency (f _{e_rx})	Expected center frequency of the received signal. 32-bit signed integer (2's complement representation) expressed as $f_{c_rx} * 2^{32} / f_{elk_rx}$. In the case of IF undersampling, the residual intermediate frequency is removed here. For example, in the case of a 70 MHz IF signal sampled at 56Msamples/s, the 14 MHz residual frequency is removed here by entering 0xC0000000. REG29 (LSB) – REG32 (MSB)
Modulation type	0 = BPSK $1 = QPSK$ $2 = OQPSK$ $REG33(5:0)$

Spectrum inversion	Invert Q bit. This is helpful in compensating any frequency spectrum
	inversion occurring during RF frequency
	translations.
	0 = off
	1 = on
Sync word	REG33(6) 0 = disabled
detection	1 = enabled
	Enable when the modulator sends a
	periodic synchronization sequence. The
	demodulator inherent phase ambiguity can
	only be removed if this feature is enabled
	at both modulator and demodulator. REG33(7)
Frequency	The demodulator natural frequency
acquisition	acquisition range is around 1% of the
range (scan)	symbol range (depending on modulation,
	SNR). The frequency acquisition range can
	be extended by frequency scanning.
	Scanning steps are spaced ($f_{symbol rate rx}$ /128)
	apart. The user can thus trade-off acquisition time versus frequency
	acquisition range by specifying the number
	of scanning steps here.
	For example, 16 steps yield a frequency
	acquisition range of +/-($\mathbf{f}_{symbol rate rx} * 12.5\%$)
	REG24
AGC	Users can to optimize the AGC response
response time	time while avoiding instabilities (depends on external factors such as gain signal
	filtering at the RF front-end and symbol
	rate). The response time is approximately:
	0 = 8 symbols,
	1 = 16 symbols,
	2 = 32 symbols, 2 = 64 symbols, etc.
	3 = 64 symbols, etc 10 = every thousand symbols.
	Valid range 0 to 14.
	REG34(4:0)
Rx AGC	REG0 = always 0x05
enable Input	0 = analog complex (I,Q) input
selection	1 = analog IF input (I-channel ADC)
	7 = internal loopback mode, from
	modulator.
	REG35(2:0)

Viterbi FEC decoder		
Parameters	Configuration	
Constraint length K and rate R	0001 = (K = 7, R = 1/2, Intelsat)	
	0010 = (K = 7, R = 2/3, Intelsat)	
	0011 = (K = 7, R = 3/4, Intelsat)	
	0100 = (K = 7, R = 5/6, Intelsat)	
	0101 = (K = 7, R = 7/8, Intelsat)	
	1011 = (K = 7, R = 1/2, CCSDS)	
	1100 = (K = 7, R=2/3, CCSDS/DVB)	
	1101 = (K = 7, R=3/4, CCSDS/DVB)	
	1110 = (K = 7, R=5/6, CCSDS/DVB)	
	1111 = (K = 7, R=7/8, CCSDS/DVB)	
	REG37(4:1)	
Differential	0 = disabled	
Decoding	1 = enabled	
	REG37(5)	
V.35/Intelsat IESS	0 = enabled	
308 descrambling after FEC	1 = bypass	
decoding	REG37(7)	
Bypass FEC	0 = decoding enabled	
decoding	1 = bypass	
	REG38(7)	
HDLC decoding	0 = enabled	
	1 = bypass	
	REG37(0)	
Output selection	0 = USB 2.0 (8-bit)	
	1 = RJ-45 LAN IP (8-bit)	
	2 = synchronous serial LVDS	
	3 = synchronous serial RS-422	
	4 = BER tester exclusively	
	REG36(2:0)	

IP Network	
Parameters	Configuration
IP address	4-byte IPv4 address.
	Example : 0x AC 10 01 80 designates
	address 172.16.1.128
	The new address becomes effective
	immediately (no need to reset the
	ComBlock).
	REG41 (MSB) - REG44(LSB)
Subnet mask	Typically 0x FF FF FF 00
	(255.255.255.0)
	REG45 (MSB) - REG48(LSB)
Gateway IP	(COM-1705 only)
address	Where to forward IP frames received
	over the modem link but not destined to
	this LAN.
	REG49 (MSB) - REG52 (LSB)
IP forwarding	(COM-1705 only)
	The IP router can be configured to
	forward(1) or not forward (0):
	REG53(0): IP multicast frames
	REG53(1): IP directed broadcast frames
	REG53(2): IP broadcast frames
	The recommended setting is zero.

(Re-)Writing to the last control register REG52 is recommended after a configuration change to enact the change.

Monitoring

Status Registers

Digital status registers are read-only.			
PSK/QAM/APSK demodulator monitoring			
Parameters	Monitoring		
Front-end AGC	12-bit unsigned value controlling the internal IF gain and external receiver gain control RX_AGC1. Inverted scale: 0 is for the maximum gain. SREG9 = LSB SREG10(3:0) = MSbs		
Carrier	Residual frequency offset with respect to		
frequency offset (fcdelta)	the nominal carrier frequency. 20-bit signed integer (2's complement) expressed as fcdelta * 2^{20} / fsymbol rate. SREG11 = LSB		
	SREG12		
Carrier tracking loop lock status	SREG13(3:0) = MSbs Lock is declared if the standard deviation of the phase error is less than 25deg rms. 0 = unlocked 1 = locked SREG14 bit 0		
Inverse SNR	A measure of noise over signal power.		
	0 represents a noiseless signal. Valid only when demodulator is locked. SREG15		
Viterbi FEC d	ecoder monitoring		
Parameters	Monitoring		
Synchronized	(FEC_DEC_LOCK_STATUS variable) Solid '1' when the Viterbi decoder is locked. '0' or toggling when unlocked. SREG14(1)		
Decoder built-in BER	The Viterbi decoder computes the BER on the received (encoded) data stream irrespective of the transmitted bit stream. Encoded stream bit errors detected over a 1000-bit measurement window. SREG16 = bits 7 - 0 (LSB) SREG17 = bits 15 - 8 SREG18 = bits 23 - 16 (MSB)		
HDLC decoder monitoring			
Parameters	Monitoring		
Cumulative number of valid bits at HDLC output	SREG19: LSB SREG20: SREG21: SREG22: MSB		

BER measurement			
Parameters	Monitoring		
Bit Errors	Bit errors can be counted when a PRBS- 11 test sequence is transmitted.		
	Number of bit errors in a 1,000,000 bit window.		
	32 bit unsigned. SREG23: error_count[7:0] (LSB)		
	SREG24: error_count[15:8] SREG25: error_count[23:16]		
	SREG26: error_count[31:24] (MSB)		
	The bit errors counter is updated once every periodic measurement window. Reading the value will not reset the counter.		
BER Synchronization	0 = not synchronized. 2047-bit pattern is not detected.		
status	1 = synchronized		
IP router monitoring			
Parameters	Monitoring		
MAC address	Unique 48-bit hardware address (802.3). In the form SREG30:SREG31:SREG32: :SREG35		
	Since the MAC address is unique, it can also be used as a unique identifier in a radio network with many nodes.		
Parameters	Monitoring		
Hardware	At power-up, the hardware platform		
self-check	performs a quick self check. The result		
	is stored in status registers SREG0-7		
	Properly operating hardware will result in the following sequence being		
	displayed: SREG0/1/2/3/4/5/6/7 = 2C F1 95 xx 0F 01 24 22		
Saturation	Denotes saturation in the transmit path. SREG8(0)		

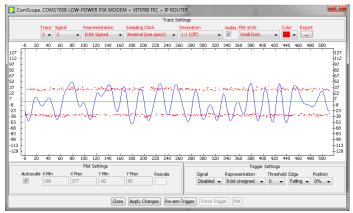
A dummy read to status register SREG8 is required to latch multi-byte status fields (to preserve their integrity).

Test Points

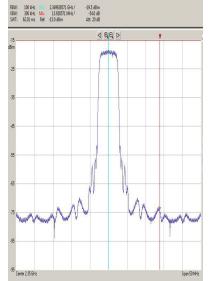
Test Point	Definition
J9	'1' when the BER tester is synchronized
connector pin A3	with the received PRBS-11 test sequence
J9	'1' when BER tester detects a byte error.
connector	Assumes that a PRBS-11 test sequence is
pin A4	being transmitted. Valid only when the
	BER tester is synchronized.
J9	BER measurement: Start of PRBS-11
connector	periodic test sequence detected with less
pin A7	than 10% bit errors. Periodic pulses every
	2047 bits.
J9	Scan frequency (coarse measurement of the
connector	received frequency)
pin A8	
J9	Carrier tracking loop frequency (fine
connector	measurement of the received frequency)
pin A15	
DONE	FPGA DONE pin. High indicates proper
	FPGA configuration

ComScope Monitoring

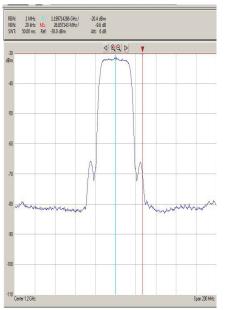
Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the button to start, then select the signal traces and trigger are defined below.


The ComScope feature is only available in the demod-only firmware options.

Trace 1 signals	Format	Nominal sampling	Buffer length
		rate	(samples)
1: Input signal (I- channel) after AGC, frequency translation, CIC decimation	8-bit signed	Input sampling rate f _{clk_rx} /R	512
2: phase after scanning and before final carrier tracking loop	8-bit signed	1 sample / symbol	512
3: Magnitude after final AGC	8-bit signed	1 sample / symbol	512
4: symbol timing tracking correction (accumulated)	8-bit unsigned	1 sample / symbol	512
Trace 2 signals	Format	Nominal sampling rate	Buffer length (samples)
1: Input signal (Q- channel) after AGC, frequency translation, CIC decimation	8-bit signed	Input sampling rate f _{elk_rx} /R	512
2: Demodulated I channel	8-bit signed	1 sample / symbol	512
3: Input signal I- channel	8-bit signed	Input sampling rate f _{clk rx}	512
4: PLL Carrier tracking phase correction (accumulated)	8-bit signed	Input sampling rate f _{clk_rx}	512
Trace 3 signals	Format	Nominal sampling rate	Buffer length (samples)
1: Input signal Q- channel	8-bit signed	Input sampling rate f elk_rx	512
2: final AGC gain	8-bit signed	Variable	512
Trigger Signal	Format	-	
N/A			


ComScope signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the \mathbf{f}_{clk_rx} processing clock as real-time sampling clock.

In particular, selecting the f_{clk_rx} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.


The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing the received baseband (I-channel, blue trace) and demodulated bits (I-channel, center of symbol, red dots)

Output spectrum (after D/A conversion and RF modulation): 5 Msymbols/s

Output spectrum (after D/A conversion and RF modulation): 10 Msymbols/s

Operation

COM1705 LOW-POWER PSK MODEM + VITERBI FEG	C + IP ROUTER Basic Settings
Modulation & FEC encoding Demodulation & FEC decoding	IP network DHCP server
Nominal symbol rate (S/s): 2000000 [<14MS/s]	Modulation: QPSK 👻
Input center frequency: 14000000 Hz	Frequency acquisition range: 0 Hz
AGC response time: 10 [0-14]	Spectrum inversion
FEC decoding 🔲 Differential decoding	Viterbi FEC decoding: K=7, R=1/2, Intelsat 👻
V.35 descrambling 🔲 HDLC decoding	Input: Analog baseband/IF 🛛 👻
Output: Synchronous serial R5-422 (J1)	
Apply Ok	Advan Cancel

Receiver bandwidth

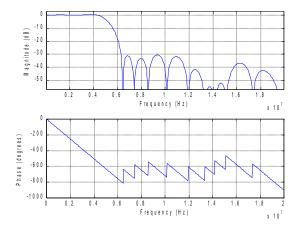
The receiver bandwidth is as follows:

- Options **-A,-D**: no anti-aliasing input filter
- Option –B,-E: 60-80 MHz IF input
- Option **--C,-F**: 130-150 MHz IF input

A/D sampling rate

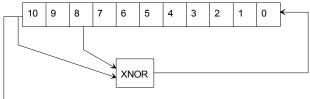
The Analog to Digital converter sampling rate \mathbf{f}_{clk_rx} is fixed for a given hardware option.

- Options –A,-D: complex baseband input. 80 MSamples/s
- Option –B,-E: 70 MHz IF input : 56 MSamples/s
- Option –C,-F: 140 MHz IF input: 80 MSamples/s


Demodulator frequency acquisition

The center frequency acquisition window is programmable. The natural acquisition window is 1% of the symbol rate. This window can be extended through frequency scanning, at the expense of a longer acquisition time.

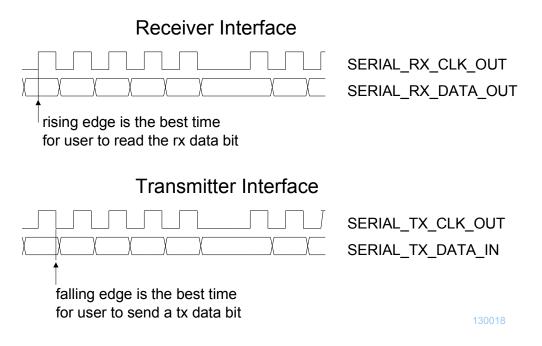
Filter Response


This module is configured with a 20% rolloff filter.

Filter Response (20% rolloff)

Pseudo-Random Bit Stream (Test Pattern)

A periodic pseudo-random sequence can be used as modulator source instead of the input data stream. A typical use would be for end-to-end bit-error-rate measurement of a communication link. The sequence is 2047-bit long maximum length sequence generated by a 11-tap linear feedback shift register:



Interfaces

1-bit synchronous serial

Clock synchronous 1-bit serial interfaces are available at the modulator data input and demodulator data output as LVDS or RS-422 electrical signals. The timing diagram is show below:

The modem provides the transmit and receive clocks to the user. When HDLC encoding is enabled, the user can decide not to transmit any data by setting the SERIAL_TX_DATA_VALID_IN signal to '0'. When the user supplies no data, the modem will send empty HDLC frames over the synchronous modulated link. When HDLC encoding is disabled, the user <u>must</u> supply a new data bit before every SERIAL_TX_CLK_OUT rising edge.

IP Routing (COM-1705)

COM1705 LOW-POWER PSK MODEM + VITERBI FEC + IP ROUTER Basic Settings			
Modulation & FEC encoding Demodulation & FEC decoding IP network DHCP server			
MAC address: 00:93:53:83:CE:A3			
IP-address: 172, 16, 1, 1			
Subnet mask: 255 255 255 0			
Gateway address: 172 16 1 3			
Apply Ok Advan Cancel			

Concept: On the transmit side, IP packets from the RJ-45 LAN interface are forwarded to the modulated link if the IP destination address is deemed remote.

The IP packets received over the LAN are stripped of their link layer information: Ethernet source address, destination address and type are removed, keeping only the IP fields.

TCP, UDP, ICMP and IGMP packets are processed since they are transmitted as IP datagrams.

Non IP packets are rejected.

IP packets whose Time-To-Live field has reached zero are discarded. For the other packets, the TTL is decremented.

Limited broadcasts (those with destination IP address 255.255.255) are not forwarded.

Packets received while the IP router is busy are also discarded without notification.

The IP packet maximum size (maximum transmission unit (MTU)) is 1500 bytes. No datagram fragmentation is necessary nor used.

The IP packets are then encapsulated within a bitwise HDLC frame, one packet per frame. A 16-bit CRC is inserted at the end of each frame to detect errors upon reception. The reverse process is performed at the receiving end. Erroneous packets which do not pass the CRC test are rejected.

The forwarding rules are specified in the RFC1812 document "Requirements for IP Version 4 Routers".

When an IP packet is received over the modulated link interface, the IP router will check whether the packet destination is for this local subnet or not. If not, the packet will be forwarded to the default gateway IP. To determine whether a packet is destined to this subnet, the router compares the masked destination address (Destination IP address & subnet mask) with the masked router address (IP router own IP address & subnet mask).

Example:

- Router IP address: 172.16.1.1
- Router subnet mask: 255.255.255.0

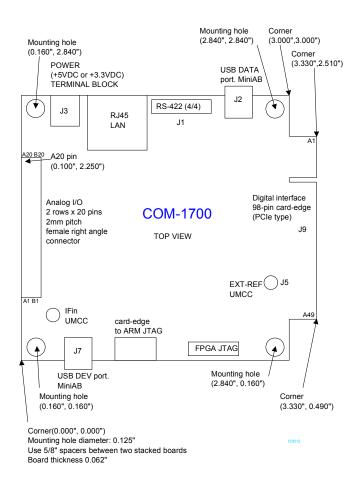
• Packet destination IP address is 74.54.97.66 Masked packet destination: 74.54.97.0 Masked router address: 172.16.1.0 Since the masked packet destination does not match the masked router address, the packet is not for a local destination. Consequently the router will forward the packet to the default gateway.

Valid IP packets are re-encapsulated inside an Ethernet packet, one IP packet per Ethernet packet.

The IP to Ethernet MAC address association is determined by means of an Address Resolution Protocol (ARP) query-reply transaction. The COM-1705 will send an ARP request asking "whois the destination IP address?" and will wait for the ARP reply with the MAC information.

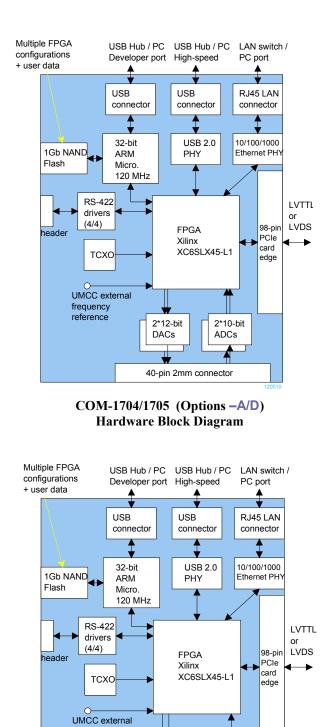
TCP Server (COM-1704)

Concept: This module acts as a TCP server (socket), waiting for a remote TCP client to initiate a connection on port 1028. Once the TCP connection is established, the remote TCP client can write and read data to/from the modem over the network.


The TCP protocol includes a flow-control mechanism. Therefore, it is impossible for a TCP client to overflow the transmitter. After writing a buffer to the TCP socket, the client application must check how many bytes were actually sent.

Underflow is not possible either because the COM-1704 transmitter sends empty HDLC frames over the link when there is not enough payload data to fill the link.

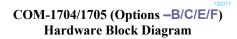
USB


A USB port is available for monitoring and control purposes only. It cannot be used for transferring payload data.

Mechanical Interface

Schematics

The board schematics are available on-line at http://comblock.com/download/com 1700schematics.pdf


Electrical Interfaces

Signal	Connector		
Power	Right-angle 3.81mm terminal		
	block.		
	3.1 - 3.5V DC regulated or		
	4.75 – 5.25V DC unregulated		
	(select at the time of order)		
	2W typ.		
10/100 Ethernet LAN	RJ45		
for data, monitoring	Supports auto MDIX to alleviate		
and control	the need for crossover cable.		
USB monitoring and	Mini-USB connector		
control	Type AB		
	Full speed / Low Speed		
IF input	70 MHz center frequency		
	-50 to +5 dBm		
	AC coupled.		
	50 Ohm		
	UMCC female connector J6		
Modulated baseband	2Vpp differential (1Vpp single		
outputs	ended), 0.5Vcommon-mode		
-	voltage.		
	Because of the high source		
	impedance (1KOhm), these		
	signals should 'see' a high input		
	impedance.		
	40-pin 2mm connector J4		
External 10 MHz	Hardware options –D,E,F.		
frequency reference	External 10 MHz frequency		
	reference for frequency		
	synthesis.		
	Sinewave, clipped sinewave or		
	squarewave.		
	UMCC female connector (J5).		
	Input is AC coupled.		
	Minimum level 0.6Vpp.		
	Maximum level: 3.3Vpp.		
Synchronous serial,	98-pin card edge, PCIe., J9		
LVDS			
Synchronous serial,	16-pin header J1		
RS-422			

Pinout

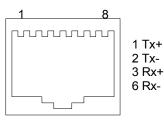
LAN Connector RJ1

The RJ45 Jack is wired as a standard PC network interface card. As the Ethernet PHY supports auto-MDIX, there is no need for special crossover cables when connecting directly to a PC. The LAN speed is limited to 10/100 Mbps to minimize power consumption without restricting operation.

40-pin 2mm connector

2*12-bit DACs 10-bit

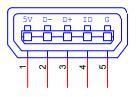
ADC

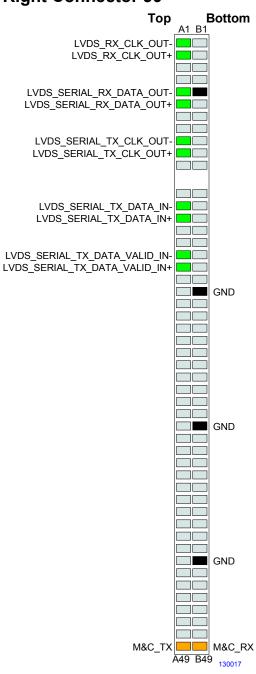

Band-Pass Filter

VGA

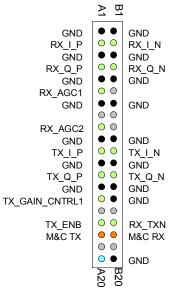
UMCC

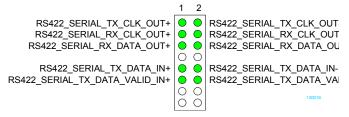
frequency


reference


RJ-45 Jack

USB


Two USB ports labeled USB DATA and J7 are equipped with a mini type AB connectors. (G = GND). The COM-1704/1705 acts as a USB device.


Right Connector J9

Analog I/O Connector J4

RS-422 Connector J1

I/O Compatibility List

(not an	exhaustive	list)
. 1	not an	CAHaustive	mot,	,

Baseband Interface

COM-1500 FPGA/ARM development platform

Analog Interface

<u>COM-3501</u> UHF transceiver COM-3505 2.4/5 GHz transceiver

COM-3506 [400MHz – 3GHz] RF transceiver

<u>COM-4001/2/3/5/6</u> RF Quadrature Modulators (requires a simple harness: electrically compatible interface but not mechanically plug-in compatible)

<u>COM-4410</u> [70 MHz – 2.2 GHz] quadrature RF modulator

Configuration Management

This specification document is consistent with the following software versions:

- COM-1704/1705 FPGA firmware: Version 3 and above.
- ComBlock Control Center graphical user interface: Revision 3.08p and above.

ComBlock Ordering Information

COM-1704

LOW-POWER PSK MODEM + VITERBI FEC + TCP SERVER

COM-1705

LOW-POWER PSK MODEM + VITERBI FEC + IP ROUTER

Options (select at the time of order):

- -A (baseband input, TCXO),
- -B (70 MHz IF input, TCXO)
- -C (140 MHz IF input, TCXO)

-D (baseband input, 10 MHz external clock),

-E (70 MHz IF input, 10 MHz external clock),

-F (140 MHz IF input, 10 MHz external clock)

Please also specify +5V unregulated or +3.3V regulated supply voltage.

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com