Com

Block

COM-5402SOFT

IP/TCP/UDP/ARP/PING STACK for GbE
VHDL SOURCE CODE OVERVIEW

Overview

Gigabit-speed IP protocols like TCP/IP and UDP/IP
can demand a high level of computation on
processors. The trend has been to move the
implementation of these fast but highly repetitive
tasks to a TCP offload engine (TOE) to free the
application processor from frequent interrupts.

The COM-5402SOFT is a generic Internet protocol
stack (including th& HDL sour ce code) designed

to support 1Gbps throughputs on low-cost FPGAs.
It is designed to achieve the maximal throughput
theoretically possible for a given medium.

The following protocols are implemented in
modular VHDL components: TCP server, UDP
frames, ARP and PING. Ancillary components are
also included for streaming, test signal generation
and bit error rate measurement.

These components can be instantiated as needed for
the application. For a TCP-IP server application
(waiting for connections from clients), one must
instantiatgpacket_parsing.vhd, arp.vhd,

tcp_server.vhd, tcp_tx.vhd and txp_rxbuf.vhd. The
maximum number of concurrent TCP connections
can be adjusted prior to VHDL synthesis depending
on the available FPGA resources.

Wireshark Libpcap network capture files can be
used as receiver input for simulation purposes.

The code is written specifically for IEEE 802.3
Ethernet packet encapsulation (RFC 894), IPv4
protocols.

The code interfaces seamlessly with the
COM-5401SOFT Tri-mode 10/100/1000 Mbps
Ethernet MAC for the MAC / PHY layers
implementation. However, the MAC interface is
generic and simple enough to interface with any

Ethernet MAC component with minimum glue
logic.

The component’s very efficient implementation
makes it suitable for multiple concurrent TCP and
UDP streams instantiations within a small FPGA.
For example, it can be configured for 2 PHYs, 2
TCP servers and 2 UDP streams in a small Spartan-
6 XC6SLX16 FPGA..

Block Diagram

MAC Application
Interface Interface
ARP
STREAM
> REPLY To
PACKETS
MAC
Receive > ;E\‘F(’:LY ! o
Interface
UDP_TX
| 5 ROUTING
PACKET TABLE
2 PARSING [7
ARP | 4
REQUEST
—
L > UDP_RX _T_’SCKETS :
STREAM [T 3]
|
TCP_RXBUF::;
Ly TCP —]
SERVER
K= T -|-|- > TCP_TXBUF
MAC o
Transmit Arbitration
Interface ‘

MSS « 18221-A Flower Hill Way « Gaithersburg, M&nd 20879 « U.S.A.

Telephone: (240) 631-1111
© MSS 2012

Facsimile: (240) 6876 www.ComBlock.com
Issued 8/12/2012

Target Hardware

The code is written in generic VHDL so that it can
be ported to a variety of FPGAs. The code was

developed and tested on a Xilinx Spartan-6 FPGA.

It can be easily ported to any Xilinx Kintex7,
Virtex-6, Spartan-6, Virtex-5 FPGAs and other
FPGAs capable of running at 125 MHz or above.

Device Utilization Summary
Device: Xilinx Spartan-6

1 UDP tx, 1 UDP n
ARP, Ping, routing
table

Flip Flops 1938

LUTs 2815

RAMB16BWERs 3

DSP48A1ls 0

GCLKs 2

DCMs/PLLs 0
1 TCP server, ARF
Ping

Flip Flops 1745

LUTs 2822

RAMB16BWERs 3

DSP48A1ls 0

GCLKs 2

DCMs/PLLs 0
2 TCP servers, AR |,
Ping

Flip Flops 2132

LUTs 3522

RAMB16BWERs 4

DSP48A1ls 0

GCLKs 2

DCMs/PLLs 0

Performance Examples

Test setupl:
512-byte UDP packets sent point-to-point over a
LAN cable. Xilinx Spartan-6 FPGA -2 speed grade.

Measured: 0 bit error, payload throughput 878.5
Mbits/s. This matches the theoretical throughput
(accounting for Ethernet, IP and UDP overhead and
slower (120 MHz) user clock). The maximum
throughput for this UDP frame size is 915 MHz
when user clock is 125 MHz or above.

Test setup 2:

TCP server transmit throughput on 100 Mbps LAN
Wireshark measurement on receive PC.

Average throughput 93 Mbps.

Test setup 3:

TCP server sends 8Gbits to TCP Java client (see
rxFileTCP in /sim directory) while Wireshark
collects speed information. Point to point LAN
connection from FPGA-based TCP server to PC.

Driver ©[E o]

ot ﬂwwwwﬂfj

Average throughput: 390.2 Mbits/s

Interfaces
MAC USER
INTERFACE TCP-IP
STREAMXx
—> CLK CLOCK TCP_RX_DATA(7:0) —>
—> ASYNC_RESET TCP_RX_DATA_VALID —>
—> TCP_RX_RTS LS
<« | MAC_TX_DATA(7:0) TCP_RX_CTS e~
<>/ MAC_TX_DATA_VALID
<>/ MAC_TX_EOF MAC TCP_TX_DATA(7:0)
— > MAC_TX_CTS TCP_TX_DATA_VALID «—
<« TX DATA TCP_TX_CTS >
<— MAC_RX_DATA(7:0)
<—{ MAC_RX_DATA_VALID UDP RX
| MAC RX_SOF MAC STREAM or FRAME
MAC_RX_EOF RX DATA
—> UDP_RX_DATA(7:0) —>
UDP_RX_DATA_VALID —>
__ 5| MAC_ADDR(47:0) UDP_RX_SOF >
5! IPv4_ADDR(31:0) UDP_RX_EOF g
_ 5| SUBNET_MAsk(3L:0) CONFIG UDP_RX_DEST_PORT_NO [<—
—>| GATEWAY_IP(31:0)
UDP TX
STREAM or FRAME
UDP_TX_DATA(7:0) —
UDP_TX_DATA_VALID S
UDP_TX_SOF <
UDP_TX_EOF <
UDP_TX_ACK >
UDP_TX_NAK g
UDP_TX_DEST_IP_ADDR [
UDP_TX_DEST_PORT NO [
UDP_TX_SOURCE_PORT_NO(:)
UDP_TX_CTS

User Interface

This interface comprises three primary signal
groups: MAC interface (direct connection to COM-
5401SOFT MAC core or equivalent), TCP streams,
UDP frames or UDP streams to/from the user
application.

All signals are clock synchronous with a user-
selected clock CLK (it does not have to be the same
as the PHY clock). To guarantee a 1 Ghps
throughput, a minimum 125 MHz clock speed is
required.

The user interface is buffered by internal elastic
buffers in both tx/rx directions.

Configuration

The key configuration parameters are brought to the
interface so that the user can change them

dynamically at run-time. Other, more arcane,
parameters are fixed at the time of VHDL synthesis.

Pre-synthesis configuration parameters

The following configuration parameters are set
prior to synthesis in theom5402pkg.vhd package
or at the top level componecdim5402.vhd.

Configuration Description
parametersin

comb5402pkg.vhd

Number of concurrent NTCPSTREAMS

TCP streams

Each additional TCP stream
requires additional resources
(RAM block, logic).

Number of transmit UDP | NUDPTX
ports enabled

Number of receive UDP | NUDPRX
ports enabled

Configuration Description

parametersin
comb402.vhd

TCP port numbers

Each TCP stream is
identified by its 16-bit port
number
TCP_LOCAL_PORTS(I)

Transmit UDP port
numbers

Each UDP stream is
identified by its 16-bit port
number
UDP_TX_LOCAL_PORTS(

1)

Receive UDP port
numbers

Each UDP stream is
identified by its 16-bit port
number
UDP_RX_LOCAL_PORTS(
1)

Receive and transmit UDP
streams can use identical or
different ports at the user’s
discretion.

Elastic buffer size

Expressed as an integer
number NBUFS of 16Kbits
RAM blocks. NBUFS is
restricted to 1,2,4 or 8.

Configuration
parametersin
arp_cache2.vhd

Description

Routing table refresh Refresh period for this
period routing table. Expressed
REFRESH_PERIOD(19:0) as an integer multiple of
100ms. Default value is
3000 (5 minutes).

Configuration
parametersin
stream 2 packets.vhd

Description

Maximum packet size When segmenting a
when segmenting a stream transmit stream, a packet
to packets will be sent out as soon as
MAX_PACKET_SIZE MAX_PACKET_SIZE
bytes are collected.
The recommended size i$
512 bytes for a low
overhead.

Inactive input stream
timeout
TX_IDLE_TIMEOUT

When segmenting a
transmit stream, a packet
will be sent out with
pending data if no new
data was received within
the specified timeout.
Expressed as integer
multiple of 4us.

Retransmission timer
TX_RETRY_TIMEOUT

A re-transmission attempt
will be made periodically
until routing information
is available and the
transmit path to the MAC
is available. The retry
period is expressed as an
integer multiple of gs.

Run-time configuration parameters

The user can set and modify the following controls
at run-time. All controls are synchronous with the
user-supplied global CLK.

Run-time Description
configuration

This network node 48-bit MAC
address. The user is responsil
for selecting a unique
‘hardware’ address for each
instantiation.

MAC address
MAC_ADDR(47:0)

e

Natural bit order: enter
x0123456789ab for the MAC
address 01:23:45:67:89:ab

It is essential that this input
matches the MAC address used
by the MAC/PHY.

IPv4 address
IPv4_ADDR(31:0)

Local IP address. 4 bytes for
IPv4.

Byte order:
(MSB)192.68.1.30(LSB)

Subnet Mask Subnet mask to assess whether
SUBNET_MASK(31:0) | an IP address is local (LAN) of
remote (WAN)

Byte order:
(MSB)255.255.255.0(LSB)

Gateway IP address
GATEWAY_IP(31:0)

One gateway through which
packets with a WAN destination
are directed.

Byte order:
(MSB)192.68.1.1(LSB)

Limitations

This software does not support the following:
- |IEEE 802.3/802.2 encapsulation, RFC
1042, only the most common Ethernet
encapsulation.

Only one gateway is supported at any given time.

Software Licensing

The COM-5402SOFT is supplied under the
following key licensing terms:

1. A nonexclusive, nontransferable license to
use the VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bitstream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicensé.pd

Reference documents

[1] ComBlock COM-1600 FPGA + ARM +
USB2.0+ DDR2 + NAND development platform
www.comblock.com/com1600.html

[2] ComBlock COM-5401 4-Port 10/100/1000
Mbps Ethernet Transceivers
www.comblock.com/com5401.html

Configuration Management

The current software revision is 1.

Directory Contents

/ Project files for various Xilinx ISE
versions.

/doc Specifications, user manual,
implementation documents

Isrc .vhd source code, .ucf constraint files,
.pkg packages.
One component per file.

/sim Testbenches

/bin .ngc, .bit, .mcs configuration files

/luse_example use example, .ngc for Spartan-6 and

instantiation template

Test components (pseudo random binary
sequence generator, bit error rate
measurement, stream to packets
segmentation, etc) are in directory
\use_example\src

Key file:
Xilinx ISE project file: com-5402_ISE142.xise

VHDL development environment
The VHDL software was developed using the
following development environment:
(a) Xilinx ISE 14.1 with XST as synthesis tool
(b) Xilinx ISE Isim as VHDL simulation tool

Ready-to-use Hardware
The binary component (.ngc) is freely available for
use on the following Comblock hardware modules:

+ COM-1600 FPGA + ARM + DDR2 +
NAND + USB2 development platform

+ COM-1500 FPGA + ARM + DDR2
SODIMM + NAND + USB2 development
platform

+ COM-5401 4-Port 10/100/1000 Mbps
Ethernet Transceivers

See the following code templates:
comblock.com/download.html#COM1600template

All hardware schematics are available in this CD.

Xilinx-specific code
The VHDL source code is written in generic VHDL
with few Xilinx primitives. No Xilinx CORE is
used. The Xilinx primitives are:

- IBUF

- IBUFG

- BUFG (global clocks)

- RAM block: RAMB16_S9 S9

Top-Level VHDL hierarchy

g LAMN_001 - COMS401 - Behavioral (com5401.vhd)
¥ Inst_ COMS402 - COMS402 - Behavioral (com5402.vhd)
"] Inst_TIMER_4US - TIMER_4US - Behavioral (timer_dus.vhd)

o Inst_PACKET_PARSING - PACKET_PARSING - Behavioral (packet_parsing.vhd)
o Inst_ARP - ARP - Behavioral (arp.vhd)

o Inst_PING - PIMNG - Behavioral (ping.vhd]

| WHOIS2_001 - WHOIS2 - Behavioral (whois2.vhd)

| ARP_CACHEZ 001 - ARP_CACHEZ - Behavioral (arp_cache2.vhd)

o] Inst_UDP2SERIAL - UDP2SERIAL - Behavioral (udp2serial vhd)

| UDP_RX_001 - UDP_RX - Behavioral (udp_rovhd)

| UDP_TX_001 - UDP_TX - Behavioral (udp_tovhd)

o| Inst_TCP_SERVER - TCP_SERVER - Behavioral (tcp_servervhd]

o| Inst_TCP_TX - TCP_TX - Behavicral (tcp_te.vhd)

o Inst_TCP_RXBUFMDEMUX - TCP_RXBUFMDEMUX - Behavicral (tcp_rebufndemus
o Inst_TCP_TXBUF - TCP_TXBUF - Behavioral (tcp_tdbufivhd)

The code is stored with one, and only one,
component per file.

The root entity (highlighted above) is
COMb402.vhd. It contains instantiations of the IP
protocols and a transmit arbitration mechanism to
select the next packet to send to the MAC/PHY.

The root also includes the following components:

- ThePACKET_PARSNG.vhd component
parses the received packets from the MAC
and efficiently extracts key information
relevant for multiple protocols. Parsing is
done on the fly without storing data.
Instantiated once.

- TheARP.vhd component detects ARP
requests and assembles an ARP response
Ethernet packet for transmission to the
MAC. Instantiated once.

- ThePING.vhd component detects ICMP
echo (ping) requests and assembles a ping
echo Ethernet packet for transmission to the
MAC. Instantiated once.

- TheWHOIS2.vhd component generates an
ARP request (broadcast) packet requesting

5

that the target identified by its IP address
responds with its MAC address.

The ARP_CACHE2.vhd component is a
shared routing table that stores up to 128 IP
addresses with their associated 48-bit MAC
addresses and a ‘freshness’ timestamp. An
arbitration circuit is used to arbitrate the
routing request from multiple transmit
instances. Instantiated once.

The flexibleUDP_TX.vhd component
encapsulates a data packet into a UDP
frame addressed from any port to any
port/IP destination. Instantiated once,
irrespective of the number of source or
destination UDP ports.

TheUDP_RX.vhd component validates
received UDP frames and extracts the data
packet within. As the validation is
performed on the fly (no storage) while
received data is passing through, the
validity confirmation is made available at
the end of the packet. The calling
application should therefore be able to
‘backtrack’ upon receiving an invalid
packet. Instantiated once, irrespective of the
number of UDP ports being listened to.
Although this component is written for one
port, it can very easily be modified to
accommodate several ports (follow the
PORT_NO signal). Therefore, there is
never any need to instantiate more than one
component.

The TCP_SERVER.vhd component is the
heart of the TCP protocol. It is written
parametrically so as to support
NTCPSTREAMS concurrent TCP
connections. It essentially handles the TCP
state machine of a TCP server: initially
listening for connection requests from
remote TCP clients, establishing and
tearing down the connections and managing
flow control while the connections are
established.

The TCP_TX.vhd component formats TCP
tx frames, including all layers: TCP, IP,
MAC/Ethernet. It is common to all
concurrent streams.

The TCP_TXBUF.vhd component stores
TCP tx payload data in individual elastic
buffers, one for each transmit stream. The

buffer size is configurable prior to synthesis
as NBUFS*16Kbits RAM blocks.

The TCP_RXBUFNDEMUX.vhd
component demultiplexes several TCP rx
streams. It does not include any elastic
buffer. It is expected that the user will
instantiate elastic buffers if the application
requires it. Data bytes are received in
sequence without gaps or backtracking.

Additional components are also provided for use
during system integration or tests.

STREAM_2 PACKETSvhd segments a
continuous data stream into packets. The
transmission is triggered by either the
maximum packet size or a timeout waiting
for fresh stream bytes.

PACKETS 2 STREAM.vhd reassembles a
data stream from received valid packets
while discarding invalid packets. The
packet’s validity is assessed at the end of
packet. It is designed to connect seamlessly
with the TCP_RX.vhd component.

LFSR11P.vhd generates a pseudo-random
binary stream PRBS11 for use during
throughput and bit error rate tests. It is
capable of generating 1 Gbps (8 bit per
clock @ 125 MHz).

BER2.vhd synchronizes with a received
data stream and counts bit errors. It is also
capable of working at 1 Ghps.

VHDL simulation

Several testbenches (tb*.vhd), located in the /sim
directory, can be used to validate the source code
through VHDL simulation. Ancillary files such as
Wireshark LAN capture files (.cap) and Xilinx
ISIM simulator configuration files (.wcfg) are also
in the same /sim directory for ready-to-start
simulations.

Quick start:

In the Xilinx ISE, open a .xise project. Click dret
View Simulation button. The available testbenches
will be displayed as illustrated below. Start the
simulator. In the ISIM simulator, open the stored
.wcfg configuration file which bears the same name
as the testbench.

ISE Project Navigator (P.15<) - C\Users\AK\Documents\source VHBI\com-54¢

File Edit View Project 5Source Process Tools Window Layout
].}__,I'.| do }'{.|'ﬂ\'ﬂ| » o 2 E =
sign had

View: () ﬁi}lmplemenmﬁon @ [simulation

| Behavioral

Hierarchy

3 B com5402 ISE141

= £ xchshdB-3csg324

'ty th5402udpri - behavior (sim\tbcom5402udpncvhd)

th5402udpte 5401mac - behavior (simitbcom5402udpte 5401 mac
th5402udptxr: - behavior (sim\tbcom5402udptxrevhd)
tharp_cache? - behavior (sim\tbarp_cache2.vhd)

tbcom5402r: - behavior (sim\tbcom5402ncvhd)

tbcom5402tcprx - behavior (sim\tbcom5402tcprevhd)
tbcom5402tcptx_5401mac - behavier (sim\tbcom5402tcptx 5401
tbcom5402tcptx - behavior (sim\tbcom5402tcptevhd)
tbcom5402udptx - behavior (simtbcom5402udptovhd)

- - - - - - -

€2 No Processes Running

Processes: th5402udpr - behavior
=R I5im Simulator

-) Behavioral Check Syntax
| 7 Simulate Behavioral Model

Clock / Timing

The software uses one synchronous clock CLK. The
clock should be at least 125 MHz in order to take
full advantage of the Gbit Ethernet speed. The code
can operate properly at less than 125 MHz, alleit a
reduced throughput.

The code is written to run at 125 MHz on a Xilinx
Spartan-6 —2 speed grade with 2 concurrent TCP
streams instantiated.

Libcap File Player

Real network packets captured by the popular WadsbAN analyzer can be used as realistic stimédushe
COM-5402 software. Thébocom5402.vhd test bench reads a libpcap-formatted file as cadtby Wireshark
and feeds it to the COM-5402 receive path. Thetifipumust be nameithput.cap and be placed in the same
directory as the ISE project.

The libpcap file format is described fivttp://wiki.wireshark.org/Development/LibpcapFilaftat

Note that Wireshark is sometimes unable to capthesksum fields when the PC operating system affidhe
checksum computation to the network interface hardwin order to still be allowed to simulate, set
SIMULATION := ‘1’ in the generic map section of ttf@0OM5402.vhd component. When doing so,
(a) the IP header checksum is considered valid wbad as x"0000".
(b) The TCP checksum computation is forced to alv@a0001, irrespective of the 16-bit field capulitzy
Wireshark.

Use Case#l: Two TCP servers, No UDP

Configuration steps:

(a) Instantiate one COM5402.vhd component for d4AlC and Ethernet transceiver. Connect the MAC
signals between the COM5402.vhd component and th€ COM5401.vhd for example).

(b) Set the number of concurrent TCP streams ircting5402pkg.vhd package.
constant NTCPSTREAMS: integer := 2;
Likewise, define the number of UDP streams as zero.
constant NUDPTX: integer := 0;
constant NUDPRX: integer := 0;

(c) Define the ports for each stream in com5402.vhd
TCP_LOCAL_PORTS(0) <= x"0400"; -- port 1024 foream #0
TCP_LOCAL_PORTS(1) <= x"0404"; -- port 1028 for sam #1

(d) Enter the MAC/IP/Gateway addresses and subaskrmat the COM5402.vhd input.

(e) Connect the two streams to the COM5402.vhdeegl I/Os.
-- Rx streams
TCP_RX_DATA =>
TCP_RX_DATA_VALID =>
TCP_RX_CTS =>
-- Tx streams
TCP_TX_DATA =>
TCP_TX_DATA_VALID =>
TCP_TX_CTS =>

Use Case#2: UDP streaming (tx/rx), No TCP server

Configuration steps:

(a) Instantiate one COM5402.vhd component for d48IC and Ethernet transceiver. Connect the MAC
signals between the COM5402.vhd component and th€ COM5401.vhd for example).

(b) In the com5402pkg.vhd package set the follovdagstants as follows:
constant NTCPSTREAMS: integer := 0;
constant NUDPTX: integer .= 1;
constant NUDPRX: integer := 1;

(c) Define the UDP tx and rx local ports in com540&2i:
UDP_RX_DEST_PORT_NO <= x"0400";
UDP_TX_SOURCE_PORT_NO <= x"0404"; (can be changedefich tx packet)

(d) Enter the MAC/IP/Gateway addresses and subaskrmat the COM5402.vhd input.

(e) If the application calls for UDP streaming &ed of raw UDP frames, instantiate the
PACKETS_2_STREAM.vhd and STREAM_2_PACKETS.vhd comgrs.

Components overview

WHOIS2.VHD

Before sending any IP packet, one must translatedistination IP address into a 48-bit MAC address.
A look-up table (withirarp_cache2.vhd) is available for this purpose. Whenever themoigntry for

the destination IP address in the look-up tabléARR request is broadcasted to all asking for the
recipient to respond with an ARP response. The @ik of thevhois2.vhd component is to assemble
and send this ARP request.

ARP_CACHE2.VHD

A block RAM is used as cache memory to store 128MR/Timestamp records. Each record
comprises (a) a 48-bit MAC address, (b) the astetid2-bit IPv4 address and (c) a timestamp when
the information was last updated. The informat®npdated continuously based on received ARP
responses and received IP packets. The componeps kewck of the oldest record, which is the next
record to be overwritten.

Whenever the application requests the MAC addi@sa §iven IP address (search key), this
component searches the block RAM for a matchingdéess key. If found, it returns the associated
MAC address. If the search key is not found orddeothan a refresh period, this component asks
whois2.vhd to send an ARP request packet.

The code is optimized for fast access. Responseisibetween 0.1 and 1.33 us depending on the
record location in memory.

This routing table is instantiated once and sharedng multiple instances requiring routing services
An arbitration circuit is used to sequence routiaguests from several transmit instances (for elamp
several instantiations of the UDP_TX component).

ComBlock Compatibility List

FPGA development platform

COM-1600FPGA + ARM + DDR2 + USB2 + NAND development platfo
COM-1500FPGA + DDR2 SODIMM socket + ARM development platfo
Networ k adapter

COM-54014-port 10/100/1000 Mbps Ethernet Transceivers

Software

COM-5401SOFTTri-mode 10/100/1000 Mbps Ethernet MAC. VHDL saimode.
COM-5402SOFTIP/UDP/TCP/ARP/PING stack. VHDL source code.

ComBlock Ordering Information
COM-5402SOFT IP/TCP/UDP/ARP/PING PROTOCOL STACK{DL SOURCE CODE

Contact Information

MSS « 18221-A Flower Hill Way e
Gaithersburg, Maryland 20879 « U.S.A.
Telephone: (240) 631-1111

Facsimile: (240) 631-1676

E-mail: info@comblock.com

10

