

COM-1807SOFT Reed-Solomon codes encoder/decoder VHDL source code overview / IP core

Overview

The COM-1807SOFT is a Reed-Solomon code error correction encoder/decoder written in generic VHDL.

The entire VHDL source code is deliverable.

Key features and performance:

- Includes encoding, decoding, frame synchronization, interleaving and data randomization.
- Runtime configuration selection:
 - Intelsat (IESS-308) sync word 5A0FBC66: I interleaved code blocks, (225, 205, 10), (219, 201, 9), (194, 178, 8), (208, 192, 8), (126, 112, 7)
 - CCSDS (131.0-B) sync word 1ACFFC1D I interleaved code blocks (255,223,16), (255,239,8)
 - o DVB (ETS 300 421): (204, 188, 8)
 - Other commonly used (N,K,t) RS configurations: (80, 56, 12), (255, 233, 11), (66, 52, 7)
- Corrects all Byte errors up to t, for a (N,K,t) code, as per theory.
- Throughput range: 580 Mbits/s to 1.3 Gbits/s (coded bits), depending on the FPGA technology
- Provided with IP core:
 - VHDL source code
 - Matlab .m file for simulating the encoding and decoding algorithms, for

generating stimulus files for VHDL simulation and for end-to-end BER/FER performance analysis at various signal-to-noise ratios

• VHDL testbench

Portable VHDL code

The code is written in generic standard VHDL and is thus portable to a variety of FPGAs. The code was developed and tested on a Xilinx 7-series FPGA but is expected to work similarly on other targets. No manufacturer-specific primitive is used.

Configuration

Synthesis-time configuration parameters

The following constants are user-defined in the codec top components generic sections prior to synthesis. These parameters generally define the size of the decoder embodiment.

Synthesis-time configuration parameters		
Encoder & Decoder ENCAPSULATED_RS_ENCODER ENCAPSULATED_RS_DECODER		
Standards instantiation ENABLE_DVB ENABLE_INTELSAT ENABLE_CCSDS8 ENABLE_CCSDS16	Instantiate the resources necessary to implement various Reed-Solomon standards: Tailor FPGA device utilization by enabling just the GF needed for the selected application '1' to instantiate '0' otherwose	
Decoder ENCAPSULATED_RS_E	DECODER	
Maximum number of corrected Bytes TMAX	Device utilization can be tailored to the code with the most error correction capability t.	

Notations

RS_N = number of encoded Bytes in a block at the RS encoder output. Excludes sync marker

RS_K = number of uncoded Bytes in a block at the RS encoder input. Excludes sync marker.

RS_I = number of interleaved RS code blocks in a frame (i.e. between sync markers) = interleaving depth, in number of RS blocks.

RS_T = error correction capability, in Bytes, for the selected RS code

I/Os

General

CLK: input

The synchronous clock. The user must provide a global clock (use BUFG). The CLK timing period must be constrained in the .xdc file associated with the project.

SYNC_RESET: input

Synchronous reset. The reset MUST be exercised at least once to initialize the internal variables. It must be exercised whenever a control parameter is changed.

Encoder

	ENCAPSULATED	_RS_ENCODER	
\rightarrow	CLK SYNC_RESET	DATA_OUT(7:0) DATA_OUT_VALID	
$\rightarrow \rightarrow \rightarrow \leftarrow$	DATA_IN(7:0) DATA_IN_VALID INPUT SOF_IN BYTES DATA_IN_CTS	ENCODED SOF_OUT BYTES EOF_OUT DATA_OUT_CTS	$\rightarrow \rightarrow \checkmark$
$\rightarrow \rightarrow \rightarrow \rightarrow$	RS_CODE(3:0) REG1(1:0) CONTROLS RS_I(3:0) RS_SHORT(7:0)	200012	

RS_CODE(3:0)

- Standard selection, enacted at SYNC_RESET
- 0 = Intelsat (225, 205, 10) sync word 5A0FBC66
- 1 =Intelsat (219, 201, 9)
- 2 = Intelsat(194, 178, 8)
- 3 =Intelsat (208, 192, 8)
- 4 =Intelsat (126, 112, 7)
- 5 = CCSDS (255,223,16) sync word 1ACFFC1D
- 6 = CCSDS (255,239,8) sync word 1ACFFC1D
- 8 = DVB (204, 188, 8) (no sync word)
- 12 = code(80, 56, 12)
- 13 = code(255, 233, 11)
- 14 = code(66, 52, 7)

REG1(1:0)

coding rate, enacted at SYNC_RESET.

- Bit 0: 0 = Tx sync word insertion off
 - 1 = Tx sync word insertion on
- Bit 1: 0 = Internal pattern generator off 1 = Internal pattern generator on
- Bit 2: 0 =Randomization off
 - 1 = Randomization on

2

RS_I(3:0)

Number of interleaved code blocks. CCSDS valid values 1 (no interleaving),2,3,4,5,8 Intelsat valid values: 1 (no interleaving), 4 DVB case: must be set to 1 (DVB interleaver is always on)

RS_SHORT(7:0)

Uncoded blocks can be shortened by RS_SHORT Bytes. RS_SHORT Bytes (zeroes) are inserted before the payload data prior to encoding. They are not sent over the transmission channel. In effect, the shortened payload size in a frame is RS_I*(RS_K - RS_SHORT)

DATA_IN(7:0): Input data is read one Byte at a time. Always a full Byte, no partial Byte allowed.

DATA_IN_VALID: input.

1 CLK-wide pulse indicating that DATA_IN is valid.

SOF_IN: optional input Start Of SuperFrame (1 superframe = RS_K*RS_I Bytes). 1 CLK-wide pulse. The SOF is aligned with

DATA_IN_VALID. When not supplied, the input byte stream is segmented within and a SOSF ipulse is inserted internally.

Note that there is no need for an end of frame as the input frame size is determined by the standard selection **RS_CODE**.

DATA_IN_CTS: output.

Clear-To-Send flow control. '1' indicates that the encoder is ready to accept another input Byte. The encoder stops requesting input data when the input elastic buffer is about to become full.

The encoder outputs mirror its inputs: DATA_OUT(7:0), DATA_OUT_VALID, SOF_OUT, EOF_OUT, DATA_OUT_CTS.

LΚ	1			
YNC_RESET	0			
TS_OUT	1			
ATA_IN[1:0]	00		00	X 10
ATA_IN_VALID	1			
OF_IN	1			

Decoder

	ENCAPSULATED_RS_D	DECODER	
\rightarrow	CLK SYNC_RESET	DATA_OUT(7:0) DATA_OUT_VALID	→
\rightarrow \rightarrow \rightarrow \leftarrow	DATA_IN(7:0) DATA_IN_VALID SOF_IN INPUT DATA_IN_CTS SYMBOLS	DECODED SOF_OUT BITS EOF_OUT OUTPUT DATA_OUT_CTS VALID_FRAME_OUT	$\uparrow \uparrow \downarrow$
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	RS_CODE(3:0) REG1(1:0)		

DATA_IN(7:0): eight hard-quantized received input bits. Bytes are packed MSb first. If the received stream includes a sync marker, this component will recover the correct bit to Byte alignment. Otherwise, a SOF_IN is required at the first input Byte and the frame first bit must be in DATA_IN(7).

DATA_IN_VALID: input.

1 CLK-wide pulse indicating that the **DATA_IN** Byte is valid.

SOF_IN: input Start Of Frame. 1 CLK-wide pulses. Aligned with **DATA_IN_VALID**.

DATA_IN_CTS: output Clear-To-Send flow control. '1' indicates that the decoder is ready to accept another input Byte.

The decoder outputs mirror its inputs: **DATA_OUT(7:0)**, **DATA_OUT_VALID**, **SOF_OUT**, **EOF_OUT**, **DATA_OUT_CTS**. Output data **DATA_OUT** is sent one Byte at a time. Bits are packed MSb first.

The decoder controls **RS_CODE**, **REG1**, **RS_I**, **RS_SHORT** are identically defined as the encoder controls.

Reed-Solomon Codes

CCSDS

Specifications [1] Field Generator Polynomial: $p(x) = x^8+x^7+x^2+x+1$ over GF(2).

Code Generator Polynomial:

 $g(x) = \Pi(x - \alpha^{11j}) j = 128$ -t to 127+t where α is a root of p(x), and t is the maximum number of correctable errors in a block.

User selectable codeword length N and correction power t: (N, K, t) = (255, 239, 8).(N, K, t) = (255, 223, 16).

Intelsat IESS-308

Field Generator Polynomial: $p(x) = x^8+x^7+x^2+x+1$ over GF(2).

Code Generator Polynomial: $g(x) = (x + \alpha^{120}). (x + \alpha^{121}). (x + \alpha^{122}).... (x + \alpha^{119+2t}).$

where α is a root of p(x), and t is the maximum number of correctable errors in a block. $\alpha = 02_{\text{HEX}}$.

User selectable codeword length N and correction power t:

(N, K, t) = (225, 205, 10). (N, K, t) = (219, 201, 9). (N, K, t) = (194, 178, 8). (N, K, t) = (208, 192, 8).(N, K, t) = (126, 112, 7).

DVB ETS 300 421

Field Generator Polynomial: $p(x) = x^8+x^4+x^3+x^2+1$. over GF(2).

Code Generator Polynomial: $g(x) = (x + \alpha^0). (x + \alpha^1). (x + \alpha^2).... (x + \alpha^{15}).$ where $\alpha = 02_{\text{HEX}}.$

Codeword length N and correction power t: (N, K, t) = (204, 188, 8).

REG1(0) must be set to zero (no sync word) length **RS_I** must be set to 1 (DVB interleaver is always on)

Other Common RS Codes

Field Generator Polynomial: $p(x) = x^8+x^4+x^3+x^2+1$. over GF(2).

Code Generator Polynomial: $g(x) = (x + \alpha^0). (x + \alpha^1). (x + \alpha^2)... (x + \alpha^{2t-1}).$ where $\alpha = 02_{HEX}$.

User selectable codeword length N and correction power t: (N,K,t) = (80, 56, 12)(N,K,t) = (255, 233, 11)(N,K,t) = (66, 52, 7)

Reed-Solomon decoding

Decoding a RS block is done in three steps:

- 1. Compute the syndromes
- 2. Derive the error locator and error evaluator polynomials
- 3. Find the roots of the error locator polynomial, compute the error Bytes values and correct the Byte errors.

Syndromes

Computing a syndrome consists in replacing x in the received code block polynomial with one of the 2t roots of the code generator polynomial g(x). If the received code block does not have any error, then all 2t syndromes are zero.

The 2t roots of the code generator polynomial g(x) are clearly identified by the g(x) definition. In the case of CCSDS (255, 223, 16) for example, $g(x) = \Pi(x - \alpha^{11j}) j = 128$ -t to 127+t. Therefore, the roots are $\alpha^{112*11}, \alpha^{113*11}, \alpha^{114*11}, \dots, \alpha^{143*11}$. All exponents are modulo 255 in the Galois field.

In the Matlab program <code>rs_codec.m</code>, the powers of α are obtained by % generate entire field in both ntuple and exponent form

[field_poly, field_exp] = gftuple([-1:254]',prim_poly,2);

Error Locator Polynomial

Using Berlekamp algorithm as described in <u>https://en.wikipedia.org/wiki/Berlekamp</u> %E2%80%93Massey_algorithm

Error Evaluator Polynomial

The error evaluator polynomial computation mirrors the computation for the error locator. These two computations are thus performed in parallel as illustrated by the block diagram below:

Performance

Encoder Latency

About 11 clock periods when no interleaving $(RS_I = 1)$ About 2*RS_I code blocks when interleaving is enabled.

Decoder Latency

Typically 2*RS_I + 2 code blocks, less when no Byte errors.

Codec Throughput

1 input frame per 533 clock periods. [case CCSDS (255,223,16)] 580 Mbits/s to 1.3 Gbits/s (coded bits), depending on the FPGA technology

BER/ FER performance

This RS codec implementation behaves as per theory: given a (N,K,t) code, it corrects all Byte errors up to t.

Software Licensing

The COM-1807SOFT is supplied under the following key licensing terms:

- 1. A nonexclusive, nontransferable license to use the VHDL source code internally, and
- 2. An unlimited, royalty-free, nonexclusive transferable license to make and use products incorporating the licensed materials, solely in bit stream format, on a worldwide basis.

The complete VHDL/IP Software License Agreement can be downloaded from http://www.comblock.com/download/softwarelicense.pdf

Configuration Management

The current software revision is 1.

Directory	Contents
/doc	Specifications, user manual, implementation documents
/src	.vhd source code,.pkg packages, .xdc constraint files (Xilinx) One component per file.
/sim	VHDL test benches
/matlab	Matlab .m file for simulating the encoding and decoding algorithms, for generating stimulus files for VHDL simulation and for end-to-end BER performance analysis at various signal to noise ratios

Project files:

Xilinx ISE 14 project file: COM-1807.xise Xilinx Vivado v2019.2 project file: project_1.xpr

VHDL development environment

The VHDL software was developed using the following development environment:

- (a) Xilinx Vivado 2019.2 for synthesis, place and route and VHDL simulation
- (b) Xilinx ISE 14.7 for synthesis, place and route

The entire project fits easily within a Xilinx Artix7-100T. Therefore, the ISE project can be processed using the free Xilinx WebPack tools.

Reference documents

[1] CCSDS "Recommended Standard for TM Synchronization and Channel Coding",

CCSDS 131.0-B-3, Blue Book, September 2017.

Applicable sections: Section 4: Reed-Solomon coding Section 9: Frame Synchronization Section 10: Pseudo-Randomizer

[2] Intelsat IESS-308, Appendix H, Rev 11

Applicable sections: Reed Solomon codec Unique Word insertion/detection

[3] DVB standard EN 300 421

Device Utilization Summary

Encoder All supported codes instantiated		% of Xilinx Artix7-100T
LUTs	3042	4.8%
Registers	1033	0.8%
Block RAM/FIFO 36Kb	4.5	3.3%
DSP48	0	0%
GCLKs	1	3.1%

Decoder All supported codes instantiated		% of Xilinx Artix7-100T
LUTs	7557	11.9%
Registers	3690	2.9%
Block RAM/FIFO 36Kb	6	4.4%
DSP48	0	0%
GCLKs	1	3.1%

Clock and decoding speed

The entire design uses a single global clock CLK. Typical maximum clock frequencies for various FPGA families are listed below:

Device family	Encoder	Decoder
Xilinx Artix 7 -1 (slowest) speed grade	159 MHz	151 MHz
Xilinx Zynq ultrascale+ -1 speed grade	344 MHz	348 MHz

VHDL components overview

Encoder top level

ENCAPSULATED_RS_ENCODER - BEHAVIOR (sro
🖮 😘 IC_001 - INPUT_CONDITIONING - behavioral (s
🔤 🔚 EB_001x - ELASTIC_BUFFER16b - behavioral
🔚 🔚 EB_002 - ELASTIC_BUFFER16b - behavioral I
🖮 🔚 IL1_001 - INTERLEAVER1 - behavioral (src\RS EN
🔄 🔚 BRAM_DP2_001 - BRAM_DP2 - Behavioral (
DUAL_BASIS_001 - DUAL_BASIS - behavioral (sr
ENC_001 - RS_ENCODER - behavior (src\RS)
🚊 🔚 SHIFT_REGISTER_001 - SHIFT_REGISTER - Be
RS_ENC_SPECIFICATIONS_001 - RS_ENC
GF_MULT_285_x - GF_MULT_285 - Beha
🔚 GF_MULT_391_x - GF_MULT_391 - beha
INTERLEAVER_DVB1_001 - INTERLEAVER_DVB1
🔄 🔚 BRAM_DP2_001 - BRAM_DP2 - Behavioral (
DUAL_BASIS_002 - DUAL_BASIS - behavioral (sr
IL2_001 - INTERLEAVER2 - behavioral (src\RS EN)
🔄 🔚 BRAM_DP2_001 - BRAM_DP2 - Behavioral (
CCSDS_RANDOMIZER_001 - CCSDS_RANDOMI
🖻 🔚 ELASTIC_BUFFER_NRAMB2_001 - ELASTIC_
BRAM_DP2_001 - BRAM_DP2 - Behavio

ENCAPSULATED_RS_ENCODER.vhd includes all encoding functions on the transmit side: RS encoding, shortened frame, interleaving/deinterleaving, dual-basis conversion T and T⁻¹, sync marker insertion and randomization. This component buffers the input Byte stream and computes the parity Bytes for each input frame. If a Start Of Frame marker is not supplied, the component will segment the input Byte stream into frames. Both inputs and outputs are 8-bit parallel.

The *INPUT_CONDITIONING.vhd* component performs the following tasks: 1. Short (16 Byte) input elastic buffer 2. Segment input Byte stream into frames. Insert SOF/EOF markers 3. Insert all zeros Bytes prior to the payload when the frame is shortened ([1] Section 4.3.7). 4. Report inconsistency between internal segmentation and external SOF_IN marker

The *INTERLEAVER1.vhd* component consists of a I-rows by K-columns interleaver prior to RS encoding, as per CCSDS specifications [1] Sections 4.3.5, 4.4.2. *INTERLEAVER2.vhd* performs the inverse de-interleaving.

Likewise, the *INTERLEAVER_DVB1.vhd* component is a Byte interleaver I=12, M=17, K columns used after RS encoding in the context of the DVB standard EN 300 421.

BRAM_DP2.vhd is a generic dual-port memory, used as input and output elastic buffers. Memory is inferred for code portability (no primitive is used).

DUAL_BASIS.vhd transforms Bytes between Berlekamp and Conventional representations. See [1] Annex F.

The heart of the encoder is *RS_ENCODER.vhd*. The encoder processes one block at a time. It supports multiple standards, encompassing two distinct Galois fields with primitive polynomials $p(x) = x^8+x^7+x^2+x+1$ (391) $p(x) = x^8+x^4+x^3+x^2+1$ (285)

RS_ENC_SPECIFICATIONS.vhd describes the supported standards in terms of primitive polynomial to generate the Galois field, uncoded block size K, encoded block size N and code generator polynomials G(x).

 $GF_MULT_285.vhd$ multiplies two numbers over $GF(2^8)$ that are in polynomial tuple representation. The component assumes that the polynomial representation is based on the primitive polynomial $x^8+x^4+x^3+x^2+1$.

 $GF_MULT_391.vhd$ multiplies two numbers over $GF(2^8)$ that are in polynomial tuple representation. The component assumes that the polynomial representation is based on the primitive polynomial $x^8+x^7+x^2+x+1$.

SHIFT_REGISTER.vhd implements the shift registers and multipliers part of the polynomial division and remainder computation.

CCSDS_RANDOMIZER.vhd is a pseudorandomizer to increase the bit transition density prior to modulation. It also inserts a periodic sync marker. The implementation follows [1] Section 10.

Decoder top level

ENCAPSULATED_RS_DECODER - BEHAVIOR (src\RS D
RS_DEC_SPECIFICATIONS_001 - RS_DEC_SPECIFICATI
CCSDS_DERANDOMIZER_001 - CCSDS_DERANDOMI2
SOF_SYNC8P_001 - SOF_SYNC8P - Behavioral (sre
MATCHED_FILTER_NBYTESx8_001 - MATCHE
FIFO_001 - FIFO - Behavioral (src\RS DECODE
SOF_TRACK8_001 - SOF_TRACK8 - BEHAVIOR
IC_001 - INPUT_CONDITIONING - behavioral (src\cor
B_001x - ELASTIC_BUFFER16b - behavioral (src\(
B_002 - ELASTIC_BUFFER16b - behavioral (src\co
IL1_001 - INTERLEAVER1 - behavioral (src\common\i
BRAM_DP2_001 - BRAM_DP2 - Behavioral (src\RS
DUAL_BASIS_001 - DUAL_BASIS - behavioral (src\con
DEINTERLEAVER_DVB1_001 - DEINTERLEAVER_DVB1 -
BRAM_DP2_001 - BRAM_DP2 - Behavioral (src\RS
RS_DECODER_001 - RS_DECODER - behavior (src\RS I
RS_SYNDROMES_001 - RS_SYNDROMES - Behavic
RS_ERRORLOCATOR_001 - RS_ERRORLOCATOR -
RS_EC_001 - RS_EC - behavioral (src\RS DECODEF
BRAM_DP2_001 - BRAM_DP2 - Behavioral (sr
MULT1 - GF_MULT_ALPHA_POWER_N_285 - I
MULT1 - GF_MULT_ALPHA_POWER_N_391 - I
MULT1 - GF_MULT_ALPHA_POWER_N_391 - I
MULTI - GF_MULT_ALPHA_POWER_N_285 - F
MULTI - GF_MULT_ALPHA_POWER_N_391 - F
MULTI - GF_MULT_ALPHA_POWER_N_391 - F
GFPOLY2EXP_ROM1_001 - GFPOLY2EXP_ROM
ALPHAPOWER_GEN_001 - ee_alphapower_roi
GFEXP2POLY_ROM1_001 - GFEXP2POLY_ROM
DUAL_BASIS_001 - DUAL_BASIS - behavioral (src\con
IL2_001 - INTERLEAVER2 - behavioral (src\common\i
BRAM_DP2_001 - BRAM_DP2 - Behavioral (src\RS)

ENCAPSULATED_RS_DECODER.vhd includes all decoding functions on the receive side: RS decoding, shortened frame, interleaving/de-interleaving, dual-basis conversion T and T⁻¹, sync marker detection, frame synchronization and derandomization. A Start-Of-Frame is required if the input Byte stream does not include a periodic sync marker. Both inputs and outputs are 8-bit parallel.

RS_ENC_SPECIFICATIONS.vhd describes the supported standards in terms of primitive polynomial to generate the Galois field, uncoded block size K, encoded block size N and code generator polynomials G(x).

The CCSDS_DERANDOMIZER.vhd component detects and removes the periodic sync markers, reconstructs the start of frame and end of frame

pulses and descrambles the received soft-quantized bit stream. It complies with sections 9 and 10 of the specifications [1].

The *SOF_SYNC8P.vhd* component detects, confirms and removes the periodic sync markers. It includes a fly-wheel mechanism to reconstruct the frame structure in the event of high bit errors. It also reports and corrects the input symbols bit to Byte packing alignment. Finally, it monitors the bit error rate within the received sync markers. I/Os are 8-symbols in parallel.

MATCHED_FILTER_NBYTESx8.vhd: a 64-bit matched filter operating on 8-parallel 1-bit hardquantized input symbols. The matched filter detects a match 'on-the-fly' on all 8 possible bits/Byte alignments. It also report inverted sequences. Default detection threshold is 10 mismatches out of 64 (15.6% BER). The threshold can be adjusted through the DETECT_THRESHOLD generic parameter.

SOF_TRACK8.vhd: Confirmation circuit for the frame synchronization. It generates a reliable SOF_LOCK_DETECT status based on the detection of the periodic sync marker at the expected time.

The *INTERLEAVER1.vhd* component consists of a I-rows by N-columns interleaver prior to RS decoding, as per CCSDS specifications [1] Sections 4.3.5, 4.4.2. *INTERLEAVER2.vhd* performs the inverse de-interleaving.

DUAL_BASIS.vhd transforms Bytes between Berlekamp and Conventional representations. See [1] Annex F.

RS_DECODER.vhd is the RS decoder proper. It computes the syndromes in *RS_SYNDROMES.vhd*, then derives coefficients of the error locator polynomial ELP and the error evaluator polynomial EEP in *RS_ERRORLOCATOR.vhd* using the Berlekamp algorithm. The *RS_EC.vhd* component implements the Chien algorithm to find the error locations and the Forney algorithm to determine the error values. As a final step, the error correction is performed on the payload field of the frame stored in elastic frame just before output. *INFILE2SIM.vhd* reads an input file. This component is used by the testbench to read a hard-quantized encoded bit stream generated by the rs_codec.m Matlab program for various codes, interleaving, randomization and Eb/No cases.

SIM2OUTFILE.vhd writes three 12-bit data variables to a tab delimited file which can be subsequently read by Matlab (load command) for plotting or analysis.

Xilinx Vivado: Synthesis settings (* denotes changes from the default settings)

Project Settings	Specify various settings associated to) Synthesis	<u> </u>
Simulation Elaboration	Constraints		
Synthesis	Default constraint set: 🕒 cons	strs_1 (active)	~
Implementation Bitstream	Report Options		
> IP	Strategy: 🤷 Vivado Synthesis I	Default Reports (Vivado Synthesis 2019) ~
Tool Settings	Options		
Project	-flatten_hierarchy*	none	~ ^
IP Defaults	-gated_clock_conversion	off	~
Board Repository	-bufg	12	
Example Project Repository	-fanout_limit	10,000	
Source File	-directive	Default	× .
Display	-retiming		_
Weblaik	-fsm_extraction	auto	~
Terp	-keep_equivalent_registers*	S	
3rd Party Simulators	-resource_sharing*	off	~
> Colors	-control_set_opt_threshold	auto	~
Selection Rules	-no_lc*	v	
Shortcuts	-no_srlextract*	S	
> Strategies	-shreg_min_size	3	
> Window Behavior	-max bram	-1	~
	Select an option above to see a desc	cription of it	
> Window Behavior	Select an option above to see a desc	cription of it	

VHDL simulation

The two main bit-accurate VHDL simulation avenues are:

- *tb_rs_codec.vhd* is a testbench for back to back encoder-decoder VHDL simulation. The testbench encompasses encoder, decoder, frame shortening, interleaving/deinterleaving, sync marker insertion, sync marker detection, PRBS-11 test sequence generation, but excludes CCSDS randomization. Errors can also be added either by specifying a Eb/No ratio or by adding errors at various points (search for the "add errors" string)

- *tb_rs_dec.vhd* is the decoder testbench. Its input consists of a received bit stream generated by the supplied Matlab program rs_codec.m.

Other minor testbenches:

- *tb_rs_enc.vhd* is a minimal testbench for the RS encoder proper.

tbGalois_multiply_enc.vhd tests GF multipliers and compare the multiplication results with thos in Matlab gf ops.m

Matlab simulation

The rs_codec.m program

- Generates a stimulus file feedecin.txt for use as input to the decoder VHDL simulation (testbench *tb_rs_dec.vhd*). The file includes a frame of pseudo-random (PRBS11) data bits, RS encoding, Additive White Gaussian Noise and hard-quantization. To enable the stimulus file generation, set outputFile = 1;
- The Matlab encoder and decoder codes are representative of the actual VHDL implementation. Thus Matlab and VHDL variables are expected to match.

When moving the project folder location, be sure to change accordingly the FILENAME file paths in *tb_rs_dec.vhd* INFILE2SIM and SIM2OUTFILE components generic section.

The following .m programs were also used during the design:

The syndromes.m program computes the powers of α (smallest root in the Galois field generated by the primitive polynomial prim_poly)

The GFexp2poly_rom1.m and

GFpoly2exp_rom1.m programs generate the contents of the VHDL ROM tables used for swapping representation of GF elements between polynomial and exponential. The associated VHDL components are *GFPOLY2EXP_ROM1.vhd* and *GFEXP2PLY_ROM1.vhd* respectively.

The ee_alphapower_rom1.m program generates the entries of a VHDL ROM table used for looking up the following expression during error evaluation: $mod((255-err_loc(i))*alphapowerstep*(1-alphapowerstart),255)$

Acronyms

Acronym	Definition
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
BRAM	Dual-port Block RAM
CCSDS	Consultative Committee For Space Data Systems
CTS	Clear To Send, a flow-control signal allowing the data source to send data.
DVB	Digital Video Broadcast standard
EOF	End Of Frame (RS_K payload Bytes)
EOSF	End Of SuperFrame (RS_K*RS_I payload Bytes)
GF	Galois Field
LSb	Least Significant bit
MSb	Most Significant bit
PRBS-11	Pseudo-Random Binary Sequence, 2047-bit period
RS	Reed-Solomon code
Rx	Receive
SOF	Start Of Frame (RS_K payload Bytes)
SOsF	Start Of SuperFrame (RS_K*RS_I payload

	Bytes)
Tx	Transmit

ComBlock Ordering Information

COM-1807SOFT ENCODER Reed-Solomon code encoder. VHDL source code / IP core

COM-1807SOFT DECODER Reed-Solomon code decoder. VHDL source code / IP core

COM-1807SOFT CODEC Reed-Solomon code encoder and decoder. VHDL source code / IP core

ECCN: EAR99

Contact Information

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: info@comblock.com