

COM-1831 BURST MODE DSSS MODEM 80 Mchip/s

Key Features

- Direct-Sequence Spread-Spectrum (DSSS) burst modulator/demodulator
- Burst mode operation:
 - fixed-length 512-bit data frames from/to LAN/UDP ports
 - Multiple frames transmitted efficiently with only 32-symbol separation.
- Acquisition: 1600-symbol preamble with no apriori knowledge of arrival time
- Large frequency acquisition range: ±(chip_rate / 64) or (1.8*symbol_rate), whichever is smaller, with no apriori knowedge.
- End-to-end latency: 2672 symbol / modulation symbol rate. For example 1.2ms at 2.5Msymbols/s.
- Programmable chip rate, up to 79.5 Mchips/s (limited by FPGA technology XC7A100T-1)
- 2047-chip Gold codes
- Data rate practical range from chip_rate/2047 to chip_rate/30
- Built-in tools: PRBS-11 pseudo-random test sequence, BER tester, AWGN generator, internal loopback mode.
- Monitoring:
 - Carrier frequency error
 - o SNR
 - o BER
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3.5" module for ease of prototyping. Single 5V supply with reverse

voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1831.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Typical assembly

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2021 Issued 9/10/2021

Block Diagram

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB, TCP-IP/LAN

or connections via adjacent ComBlocks

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1831 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1831 module to be configured, next click the Settings button to display the Settings window shown below.

COM1831 Burst mode DSSS modem Basic Settings	X
Transmit Receive Network	
Chip rate: 79500000 Chips/s	I-code: 2225 Octal
I-channel symbol rate: 1000000 Symbols/s	Tx center frequency offset: 0 Hz
Input Selection: Internal PRBS-11 test sequence, 0.1s period 👻	
Spectrum inversion	FEC encoding
Signal amplitude: 10000 range 0-65536	Noise amplitude: 0 range 0-65536
	Tx frame counter: 671
Restore Default Apply	Ok Advan Cancel
COM1831 Burst mode DSSS modem Basic Settings	
Transmit Receive Network	
Chip rate: 79500000 Chips/s	I-code: 2225 Octal
I-channel symbol rate: 1000000 Symbols/s	Input center frequency: 0 Hz
AGC response time: 6 0 - 14	
Spectrum inversion	FEC decoding
Input: Modem internal loopback mode 👻	
	Rx frame counter: 658
Restore Default Apply	Ok Advan Cancel

COM1831 Burst mode DSSS modem Basic Settings	— X—
Transmit Receive Network	
Static IP address: 172 16 1 128	Subnet mask: 255, 255, 255, 0
Gateway address: 172 16 1 3	
Destination IP address: 172 16 1 68	destination port: 1024
MAC address: 02:4A:48:71:B0:5A	
Restore Default Apply Ok	Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write. Definitions for the Control registers and Status registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Several key parameters are computed on the basis of the 160 MHz ADC clock f_{clk_adc} or the 120 MHz internal processing clock f_{clk_p} .

Modulator	tor		
Parameters	Configuration		
Reserved	REG0		
Processing clock	Modulator processing clock. Also serves as DAC sampling clock.		
1 _{clk_tx}	Expressed as as $\mathbf{f}_{clk_tx} = \mathbf{f}_{clk_p} * M / (D * O)$ where		
	D is an integer divider in the range 1 - 106		
	M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3		
	O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3		

	Note: the graphical use interface computes the best values for M, D and O.
	$\mathbf{f}_{\text{clk}_{\text{tx}}}$ recommended range 80-160 MHz.
	REG1(6:0) = D
	REG2 = M(7:0)
	REG3(1:0) = M(9:8)
	REG4 = O(7:0)
	REG5(2:0) = O(10:8)
Chip rate	The modulator chip rate is in the form
fchip_rate_tx	$\mathbf{f}_{chip_rate_tx} = \mathbf{f}_{clk_tx} / 2^{n}$
	where n ranges from 1 (2 samples per chip) to 15 (chip rate = $f_{\rm max}$ / 32768)
	n is defined in REG6(3:0)
I Code	Linear feedback shift register initialization.
	As per [1]
	REG7 LSB
	REG8(2:0) MSb
Q Code	REG9 LSB
	REG10(2:0) MSb
Reserved	REG11-REG14

I channel	The I-channel symbol rate can be set
symbol rate	independently of the spreading code
f _{symbol_rate_i}	period as
	$\mathbf{f}_{symbol_rate} * 2^{32} / \mathbf{f}_{clk_tx}$
	Ignored when spreading is disabled (the
	symbol rate is then defined by the chip
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	The O channel symbol rate can be set
Q channel	independently of the spreading code
f	neriod as
*symbol_rate_q	formed as $\frac{*2^{32}}{\text{felk tx}}$
	Symbol_rate cal_a
	REG19 (LSB) – REG22 (MSB)
Output center	The modulated signal center frequency
frequency (f _c)	can be shifted in frequency
	32-bit signed integer (2's complement
	representation) expressed as $a + 2^{32} + 4^{32}$
	$\mathbf{f}_{c} + 2^{32} / \mathbf{f}_{clk_tx}$
	$\mathbf{PEG23}(\mathbf{ISB}) = \mathbf{PEG26}(\mathbf{MSP})$
Disital Circul	16 hit compliants a continuity of the factor of the f
Digital Signal	16-bit amplitude scaling factor for the
gain	The maximum level should be adjusted to
	prevent saturation. The settings may vary
	slightly with the selected chip rate. Please
	check for saturation (see test points) when
	changing either the chip rate or the signal
	gain.
	REG27 = LSB
	REG28 = MSB
Additive White	16-bit amplitude scaling factor for
Gaussian Noise	additive white Gaussian noise.
gain	Because of the notential for saturation
	please check for saturation (see test
	points) when changing this parameter.
	REG29 = ISB
	REG30 = MSB
Input selection	0 = from UDP port 1024
r	1 = internal nseudo random test seguence
	1 - memai pseudo-random test sequence. 100ms repetition
	2 - internal negation random test segurates
	2 - internal pseudo-random test sequence
	β = unmodulated test mode (carrier only)
	REG31(1:0)
FEC encoding	K=9 rate $\frac{1}{2}$ convolutional code with zero
	tail bits.
	1 = enabled
	0 = bypassed
	RFG31(2)
	NL031(2)

Spectrum	Invert Q bit
inversion	0 = off
	1 = on
	REG31(3)
BPSK / SQPN	0 = BPSK
	1 = SQPN
	REG31(4)
	Future feature. BPSK baseline
Spreading	0 = spreading disabled
	The symbol rate is defined as f _{chip_rate_tx}
	The symbol rate field is ignored.
	1 = spreading enabled
	REG31(5)
External	When using an external transceiver such
transmitter	as the COM-350x family, the transmitter
gain control	gain can be controlled through the
	TX_GAIN_CNTRL1 analog output signal.
	Range $0 - \overline{3.3V}$.
	REG32: LSB, REG33(3:0): MSb
TX ENB	The TX ENB signal at the interface
control	controls the RF transmit circuit. During
	normal operations, the transmitter and
	ancillary circuits (RF LO) are muted
	outside of a transmit burst.
	REG33(4) = 0
	However, during tests, the transmitter can
	be forced to stay ON at all times, for
	example when the AWGN is generated
	within.
	REG33(4) = 1

Demodulator	
Parameters	Configuration
Nominal chip	32-bit integer expressed as
rate	$\mathbf{f}_{chip_rate_rx} * 2^{32} / \mathbf{f}_{clk_adc}.$
f _{chip_rate_rx}	The maximum practical chip rate is
	\mathbf{f}_{clk_adc} /2.
	The maximum allowed error between
	transmitted and received chip rate is +/-
	100ppm.
	PEC25 = hito 7.0 (LSP)
	PEC36 = bits 15 - 9
	REG30 = bits 13 = 8 REG37 = bits 23 - 16
	REG38 = bits 31 - 24 (MSB)
I Code	Linear feedback shift register A
10040	initialization.
	REG39 LSB
	REG40(2:0) MSb
Q Code	Linear feedback shift register C
	REG41 LSB
	REG42(2:0) MSb
CIC_R	Receiver decimation factor from f_{clk_adc} to
	4* f _{chip_rate_rx} .
	Valid range 1 - 16384
	REG43 LSB
	REG44 MSB
Reserved	REG45-REG46
Nominal I	Nominal I-channel symbol rate, defined as
channel symbol	$\mathbf{f}_{symbol_rate_i} * 2^{32} / \mathbf{f}_{clk_adc}$
rate	
I _{symbol_} rate_i	REG47 (LSB) – REG50 (MSB)
Nominal Q	Nominal Q-channel symbol rate, defined as 2^{32}
channel symbol	Isymbol_rate_q * 2 / Iclk_adc
f	REG51(LSR) = REG54(MSR)
L channel	Approximate (i e rounded) ratio of chin rate
spreading	/ symbol rate
factor	Range: $3 - 2047$
(Processing	Note: to effectively achieve this processing
gain)	gain, the
	code period must be longer than one
	symbol duration.
	REG55 (LSB)
	REG56(4:0) MSb
Q channel	Approximate (i.e rounded) ratio of chip rate
spreading	/ symbol rate
tactor	REG57 (LSB)
(Processing	KEG58(4:0) MSb
gain)	The neurinal contex for more in C. 1
inominal input	i ne nominal center frequency is a fixed
fraguancy (f)	applied to the input
nequency (Ic)	corrections for example to correct clock
	drifts
	32-bit signed integer (2's complement
	representation) expressed as
	representation) expressed as

	$\mathbf{f_c} * 2^{32} / \mathbf{f_{clk adc}}$
	In addition to this fixed value, an optional
	time-dependent frequency profile can be
	entered. See frequency profile table.
	REG59 (LSB) - REG62 (MSB)
Reserved	REG63
Spectrum	Invert O bit
inversion	0 = off
	1 = op
	REG64(0)
BPSK / SOPN	0 = BPSK
DI DILI DQI II	1 = SOPN
	Future feature BDSK baseline
	REG64(1)
Despreading	0 = despreading disabled
Despreading	0 = despicating disabled
	The symbol rate field is ignored
	The symbol fate field is ignored.
	1 = enabled
	P = Chaoled
FEC decoding	KE005(5) K=0 rate 1/ Viterbi deceding
enabled	K-9 fate /2 vitefol decoding
entioned	i enabled, o bypassed
	DEC(65(1)
AGC response	KEO05(1)
time	while avoiding instabilities (depends on
time	while avoiding instabilities (depends on
	external factors such as gain signal fintering
	at the RF front-end and chip rate). The
	AGC_DAC gain control signal is updated as
	0 = every cnip, 1 = sucre 2 insut shins
	1 = every 2 input chips,
	2 = every 4 input chips,
	5 = every 8 input chips, etc
	10 = every 1000 input chips.
	valid range 0 to 14. $\mathbf{DEC}(C(4,0))$
Demedianet	$\frac{\text{REG00(4.0)}}{(1 - 1)^{1 + 1}}$
selection	0 = baseband input (I/Q complex samples)
selection	I = IF input (I as real input, Q is ignored)
	/ = internal loopback
	$\operatorname{DEC}(4(7,5))$
DEDT	KEU00(7.3) The Dit Emery Data Testan scents the
DEK I measurement	The BIT Error Kate Tester counts the
window	humber of bit errors over the window
Willia W	defined below:
	000 = 1.000 bytes
	000 - 1,000 bytes
	0.01 - 10,000 by tes
	010 - 100,000 bytes 011 - 1,000,000 bytes
	100 - 10000000 bytes
	100 - 10,000,000 bytes
	101 - 100,000,000 bytes
	110 - 1,000,000,000 bytes
	PEC67(2:0)
	KEOU/(2.0)

Network Inter	rface		
Parameters	Configuration		
LAN MAC	REG70. To ensure uniqueness of MAC		
address LSB	address. The MAC address most		
	significant bytes are tied to the FPGA		
	DNA ID. However, since Xilinx cannot		
	guarantee the DNA ID uniqueness, this		
	register can be set at the time of		
	manufacturing to ensure uniqueness.		
Static IP	4-byte IPv4 address.		
address	Example : 0x AC 10 01 80 designates		
	address 172.16.1.128		
	REG/1: MSB		
	REG/2		
	REG/3		
Carlan at an a la	KEG/4: LSB		
Subnet mask	REG75 (MSB) – REG78(LSB)		
Gateway IP address	REG79 (MSB) – REG82(LSB)		
Destination IP	4-byte IPv4 address		
address	Destination IP address for UDP frames		
	with decoded data.		
	REG83 (MSB) – REG86(LSB)		
Destination	I-channel data is routed to this user-defined		
ports	port number:		
	REG87(LSB) – REG88(MSB)		
	Q-channel data is routed to the incremented port number.		

(Re-)Writing to the last control register REG99 is recommended after a configuration change to enact the change.

Status Registers

	Parameters	Monitoring
	Hardware self-	At power-up, the hardware platform
	check	performs a quick self check. The result
		is stored in status registers SREG0-9
		Properly operating hardware will result
		in the following sequence being
		displayed:
		01 F1 1D xx 1F 93 10 00 22 07.
	FEC decoder input	The burst-mode FEC decoder computes
	DEK measurement	the input BER prior to decoding.
		Mesasured in a frame. This method
		works with any bit sequence.
	DED tester	SREGIO (LSB) - SREGIO (MSB)
	synchronized	SKEG19(0): I when the BERT IS
	synchronized	11 test sequence
	Bit error rate	Monitors the REP (number of hit errors
	Dit erfor fate	over the BERT measurement window)
		when the modulator is sending a PRBS-
		11 test sequence
		Ti test sequence.
		The BERT measurement window size is
		defined in CREG67.
		SREG20 (LSB) – 22 (MSB)
	Number of	SREG23 (LSB) – 25 (MSB)
	transmitted frames	
	Number of	SREG26 (LSB) – 28 (MSB)
	Number of parallel	The number of perellel and acquisition
	code acquisition	airquita is expressed as
	circuits	NACO = NACO DIV * NMUX
		Integ Integ_Div Innex
		SREG29: NACO DIV
		SREG30: NMUX
I	Non-coherent	SREG31
	integration and	
	dump period	
	N_NCID	
	Measured	SREG32(LSB)
	modulated signal	SKEU33 SDEC24(MSD)
	Measured	Approximation: poise power is uniform
	AWGN power	Approximation. Horse power is dimonit
	Awon power	Therefore, the noise density depends on
		the selected modulator chin rate (see
		felk tr equation above)
		SREG35(LSB)
		SREG36
		SREG37(MSB)
	AGC	Front-end AGC gain settings 12-bit
		unsigned. Inverted (0 for maximum
		gain)
		SREG38 (LSB)
		SREG39(3.0) (MSB)
	Carrier	Residual frequency offset with respect
	frequency	to the nominal carrier frequency (i e
1		

offset1	after frequency profile correction). Part
	32-bit signed integer expressed as
	fcerror * * 2^{32} / \mathbf{f}_{elk_p}
	SREG40 (LSB) – SREG43 (MSB)
Carrier	Residual frequency offset with respect
frequency	to the nominal carrier frequency (i.e.
offset2	after frequency profile correction). Part
	2/2.
	32-bit signed integer expressed as
	fcerror * * 2^{31} / \mathbf{f}_{chip_rate}
	SREG44 (LSB) – SREG47 (MSB)
SNR	2*(S+N)/N ratio,
	valid only during code lock.
	Linear (not in dBs)
	Fixed point format 14.2
	SREG48 (LSB) – SREG49 (MSB)
TCP-IP Connecti	on Monitoring
Parameters	Monitoring
LAN PHY ID	Expect 0x22 when LAN adapter is
	plugged in.
	SREG7
MAC address	Unique 48-bit hardware address (802.3).
	In the form SREG10:SREG11:SREG12:
	:SREG15
Multi-byte status	variables are latched upon (re-)reading
SREG7.	

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the button to start, then select the signal traces and trigger are defined as follows:

	Trace 1 signals	Format	Nominal sampling	Buffer length	In particular, selecti real-time sampling
		0.1.1	rate	(samples)	same time-scale for
	1: I-channel spread	8-bit	ADC clock	512	
	input, directly from	signed	f _{clk_adc}		The ComScope use
	ADC (could be at IF)				The Comscope use
ł	2. Demodulated I-	8-hit	1 sample /	512	www.combiock.cor
	channel	signed	I-symbol	512	ImScope COM1831A Burst mode DSSS modem
ł	3. FFT magnitude	8-bit	ADC clock	512	inscope, comitasta buist node bass nodem
	2. III I mugintude	unsigned		514	Trace Signal Representation Sampling Cloc 1 ↓ 2 ↓ 8-bit Signed ↓ Nominal (see
ł	4: Carrier tracking	8-hit	ADC clock	512	461 -436 -411 -386 -361 -336 -311 -286 -261
	phase	signed	f	512	
$\left \right $	Trace 2 signals	Format	Nominal	Buffer	
	race 2 signals	ronnat	sampling	length	
			rate	(samples)	1 the former and the second se
	1. I-channel spread	8-hit	ADC clock	(samples)	
	input at near-zero	signed		512	
	center frequency	signed	International state sta		461 -436 -411 -386 -361 -336 -311 -286 -261 Plot Settinas
ŀ	2: Code replica.	8-bit	2	512	Autoscale X Min X Max Y Min Y Max
	Compare with	signed	samples/chip		
	spread input				Close Apply Chan
	signals			C	omScope example, showi
ľ	3: last demod AGC	8-bit	1 sample /	512 de	modulated I-hits during
	gain (I-channel)	unsigned	symbol	h	ulf) Trace2 signal 4 (in i
ľ	4: Symbol tracking	8-bit	1 sample /	512 nl	197. 114002 Signai 1 (111 1
	phase (accumulated)	signed	symbol	pr	<i>iuse</i> .
İ	Trace 3 signals	Format	Nominal	Buffer	omScope. COM1831A Burst mode DSSS modem
I	U			lan ath	
I			sampling	length	
			sampling rate	(samples)	Trace Signal Representation Sampli 2 → 2 → 8-bit Signed → Nomir
	1: I-channel after	8-bit	sampling rate 2 samples /	(samples)	Trace Signal Representation Sampli 2 √ 2 √ 8-bit Signed √ Nomir -51 -31 -11 9 29 49 69 89 109 129
	1: I-channel after FFT frequency	8-bit signed	sampling rate 2 samples / chip	(samples) 512	Trace Signal Representation Sample 2 2 8-bit Signed Nomin -51 -31 -11 9 29 49 69 89 109 129
	1: I-channel after FFT frequency correction,	8-bit signed	2 samples / chip	(samples)	Trace Signal Representation Sample 2 2 8-bit Signed Momin -51 -31 -11 9 29 49 69 69 109 129 -
	1: I-channel after FFT frequency correction, resampling and channel LPE	8-bit signed	2 samples / chip	(samples) 512	Trace Signal Representation Sample [2] [2] [2] [8-bit Signed] [Nomin -51 -51 -51 -51 9 29 49 69 89 109 129 - <t< td=""></t<>
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated	8-bit signed	2 samples / chip	(samples) 512	Trace Signal Representation Sample 2 2 8-bit Signed Noming -51 -31 -11 9 29 49 69 89 109 129 -
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated O-channel	8-bit signed 8-bit	2 sampling 2 samples / chip 1 sample / O-symbol	(samples) 512 512	Trace Signal Representation Sample 2 2 8-bit Signed Nome -51 -51 -51 9 29 49 69 89 109 129 -
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking	8-bit signed 8-bit signed	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples /	(samples) 512 512	Trace Signal Representation Sample 2 2 8-bit Signed Nomin -51 -31 -11 9 29 49 69 89 109 129 -
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction	8-bit signed 8-bit signed 8-bit	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol	(samples) 512 512 512	Trace Signal Representation Sample 2 2 2 8-bit Signed Nomin 51 -31 -11 9 29 49 69 69 109 129 4 100 <t< td=""></t<>
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated)	8-bit signed 8-bit signed 8-bit signed	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol	samples) 512 512 512 512	Trace Signal Representation Sample 2 2 2 8-bit Signed Nomin -51 -31 -11 9 29 49 69 69 109 129 -
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after	8-bit signed 8-bit signed 8-bit signed 8-bit	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol	icngin (samples) 512 512 512 512 512 512 512	Trace Signal Representation Sample 2 2 2 8-bit Signed Nomin -51 -31 -11 9 29 49 69 89 109 129 -
	1: I-channel afterFFT frequencycorrection,resampling andchannel LPF2: DemodulatedQ-channel3: Code trackingphase correction(accumulated)4: 2(S+N)/N afterdespreading. Valid	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	chight (samples) 512 512 512 512 512 512	Trace Signal Representation Sample 2 2 2 8-bit Signed Nomin -51 -31 -11 9 29 49 69 89 109 129 -
	1: I-channel afterFFT frequencycorrection,resampling andchannel LPF2: DemodulatedQ-channel3: Code trackingphase correction(accumulated)4: 2(S+N)/N afterdespreading. Validonly if code is	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	chight (samples) 512 512 512 512 512 512	Trace Signal Representation Simplify 2 2 - 8-bb Signed Information -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -Flot Settings
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked.	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned	sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	icngin (samples) 512 512 512 512 512 512	Tree Signal Representation Simple 2 2 2 8-bb Signed Nomin -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 Plot Settings Autoscale XNin XMax YMin YMax 202 -142 117 117 117 129 129 142 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 </td
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dPc)	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	icngin (samples) 512 512 512 512 512 512	Trace Signal Representation Sample 2 2 2 8-bk Signed Nomin 51 -31 -11 9 29 49 69 69 109 129
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dBs)	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	rength (samples) 512 512 512 512 512	Trace Signal Representation Sample 2 2 2 8-bk Signed Nome -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 -51 -31 -11 9 29 49 69 69 109 129 Autoscale XMin XMax YMin YMax YMax V 74 202 -142 117 117 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 1
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dBs) Trigger Signal	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned Format	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	rength (samples) 512 512 512 512 512	Trace Signal Representation Sample 2 2 2 8bbs Signed Nome 51 -31 -11 9 29 49 69 69 109 129 4 4110 Autor Flow <
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dBs) Trigger Signal 1: End of demodulated hurst	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned Format Binary	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	Itengin (samples) 512 512 512 512 512	Tree Signal Representation Sample 2 2 2 8bbs Signed Nome -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -4utoscale XMIN XMAX YMIN YMAX YMIN YMAX V 74 202 -142 117 Come Apple ComScope example, s. received spread signal rec rec
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dBs) Trigger Signal 1: End of demodulated burst	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned Format Binary	2 sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol rate / 2.5	iengin (samples) 512 512 512 512 512	Tree Signal Representation Sample 2 2 2 8bbs Signed Nome -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 Autoscale XMIN YMax YMIN YMax YMIN YMax V 74 202 -142 117 Cosee Appl ComScope example, s. signal received spread signal re
	1: I-channel after FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked. Linear (i.e. not in dBs) Trigger Signal 1: End of demodulated burst 2: Missed burst	8-bit signed 8-bit signed 8-bit signed 8-bit unsigned Format Binary Binary	sampling rate 2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol rate / 2.5	rength (samples) 512 512 512 512 512 512	Tree Signal Representation Sample 2 2 8-bit Signed Nome -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 -51 -31 -11 9 29 49 69 89 109 129 Autoscale Min Max Min Max Min Max 74 202 -142 117 Come Apple ComScope example, si signal received spread signal rec

of expected burst)	
3. Demod sync	Binary
word detection	

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk_adc} demod clock as real-time sampling clock.

In particular, selecting the f_{elk_ade} demod clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

SomScope example, showing trace1 signal2 (in blue): emodulated I-bits during preamble (left) then data (right alf). Trace2 signal 4 (in red) shows the I-symbol tracking hase.

ComScope example, showing code lock with aligned: received spread signal after RRC filter (green) vs code replica (red)

Digital Test Points

Test	Definition	
Point		
J4/A1	Transmit frame boundaries $(0 = idle)$	
J4/A2	Modulator saturation	
J4/A3	Demod code lock	
J4/A4	Demod signal presence detected at FFT	
J4/A5	Demodulator recovered carrier/center	
	frequency (coarse)	
J4/A6	Demod recovered carrier/center frequency	
	(fine)	
J4/A7	Demod data field(s) [demod state = 3]	
J4/A8	Start of spreading code replica (compare with	
	start of spreading code at the modulator)	
J4/A9	Demod start of I code replica	
J4/A10	Demod input I channel MSB (compare with	
	replica)	
J4/A11	Demodulated I bit	
J4/A12	Demod sync word detection	
J4/A13	Missed burst detection	
J4/A14	Demod state 0	
J4/A15	Demod state 1	
J4/A16	Demod state 2	
J4/A17	Demod state 3	
J4/B1	FEC decoder input bit error	
J4/B2	BER tester synchronized	
J4/B3	BER tester matched filter output (detects start	
	of PRBS11 sequence)	
J4/B4	Byte error detected by BER tester	

Operation

Spreading codes

Each burst undergoes spectrum spreading with userselected pseudo-random codes. All fields (preambles, sync word, data) are spread.

Spreading codes are user-selected among a group of 2047-period Gold codes, irrespective of the symbol rate. The codes are selected by their 11-bit A and C registers initialization.

Burst format

The modulator input consists of a 512-bit fixed-length payload data frame received over LAN/UDP.

The payload data frame is encoded with a convolutional code K=9, rate $\frac{1}{2}$, resulting in an encoded frame of length 1040 bits (including the 16 tail bits).

When transmitting a single frame, the frame is encapsulated in a spread-spectrum burst comprising four distinct fields:

- no data preamble
- toggling bits preamble
- 32-bit synchronization field
- 1040-bit encoded payload field

		512-bit data from UDP port
		1040-bit FEC encoded data
	010101 preamble	
000000 preamble	32-b sync	it

When transmitting multiple frames, follow-on frames are appended without preamble, separated only with a 32-bit sync word.

Transmission timing

A data frame received over UDP is transmitted without delay. The transmission time uncertainty is small (< TBD us). The user application is therefore fully in control of the burst scheduling, for example to prevent collisions in a multi-node network.

When the modulator is configured in PRBS11 test mode, the PRBS11 pseudo-random test sequence is generated internally, packetized in 512-bit frame and transmitted one frame every 100 ms. The UDP input is ignored while in this mode.

Input elastic buffer

When more than 512 bits of payload data is needed, multiple data frames can be queued for transmission in the elastic buffer. The modulator expects any follow-on frame to be entirely within the input elastic buffer before the previous frame transmission is complete (so as to avoid transmissing another long preamble). In this case, the modulator only inserts a 32-bit synchronization word between payload frames.

The input elastic buffer size is 8Kbit, large enough for 7 encoded frames.

Symbol rate

The symbol rate refers to the coded stream. The symbol rate can be set independently of the chip rate and code period. The demodulator includes an autonomous symbol tracking loop, separate from the code tracking loop.

Frequency acquisition & tracking

The frequency acquisition range depends on the chip rate, as defined by \pm Chip_rate / 64 For example, in the case of a 35Mchips/s burst, the frequency acquisition range is \pm 545 KHz.

Once locked, the carrier tracking loops tracks the carrier phase over a very wide frequency range.

Modulation

Baseline: BPSK spread with I-channel code. Possible future extension: SQPN (I and Q channels spread with staggered I and Q code, Q-channel symbol rate = I-channel symbol rate / N, where N is an integer.

Code Acquisition

NACQ parallel detectors search for code aligment during the code acquisition phase. During the subsequent code tracking phase, 3 detectors track the early/center/late code while the other NACQ-3 detectors scan for false lock. The detectors are staggered ¹/₂ chip apart.

To further minimize the latency, the NACQ parallel detectors are organized into NMUX banks of NACQ_DIV detectors. NACQ = NMUX*NACQ_DIV.

Detection is performed in two steps: first a coherent detector averages the despread signal over $\frac{1}{2}$ a symbol period. The result is squared and further averaged over N_NCID symbols.

The internal implementation parameters NACQ_DIV, NMUX and N_NCID are fixed prior to FPGA synthesis. They can be read back in status registers SREG(29), SREG(30) and SREG(31) respectively.

Load Software Updates

From time to time, ComBlock software updates are released.

To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

ComBlock Cor	ntrol Cent	er					
File Operations F	unctions H	telp					
* 🔌 🖻 🍕	k 🛈 🛛	s 🗓 🛢					
COM5003 1	FCP-IP	/ USB (GATE	WAY			
-COM800	COM500	3 TCP-IP / l	JSB GAT	EWAY			×
-COM1	-Personalit Index	ies Personality	Option	Default	Authorized	Boot Protection	Address
	1 2	1400 5003	B B		Yes Yes	Yes No	0 262144
■	3	5003	в	D	Yes	No	524288
00	4		В		Yes	No	0
	5		в		Yes Vec	No	0
~	7		в		Yes	No	0
	-Add/Remo	ve/Modify Per	sonality-				
	Index	Personality	Option	Password			
	3 🗸	5003	В		Set Def	ault Add	/Modify
				Clo	se	-	
							1
<							>
172.16.1.128							

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

The firmware options available for this receiver are: -A firmware uses an internal VCTCXO frequency reference. COM-3504 right connector interface. -B firmware option requires an external 10 MHz frequency reference. COM-3504 right connector interface.

-C firmware uses an internal VCTCXO frequency reference. COM-30xx left connector interface + COM-4009 right connector interface.

-D firmware option requires an external 10 MHz frequency reference. COM-30xx left connector interface + COM-4009 right connector interface.

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in J3 and during power-up. This prevents the FPGA configuration and restore USB communication [LAN communication is restored only if the IP address is known/defined for the personality index selected as default]. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

Troubleshooting Checklist

Demodulator can't achieve lock even at high signalto-noise ratios:

• Make sure the modulator baseband I/Q signals do not saturate, as such saturation would strongly distort the modulation phase information. (this is a phase demodulator!)

VHDL code

The FPGA code is written in VHDL. It does not use any IP core or third-party software. It occupies the following FPGA resources:

Available Resource Utilization Utilization % FF 39284 126800 30.98 LUT 36668 63400 57.84 19000 Memory LUT 0.41 78 I/O 124 285 43.51 BRAM 32.5 135 24.07 DSP48 240 22.50 54 BUFG 32 21.88 7 MMCM 3 6 50.00

Interfaces

ADC/DAC Interface	Definition
ADC_SAMPLE_CLKOUT_P	ADC sampling clock output:
ADC_SAMPLE_CLKOUT_N	160 MHz.
ADCx_DATA_IN[13:2]	ADCx digital samples input.
	12-bit unsigned (also known
	as "offset binary") format.
	The two least significant bits
	(1:0) are unused (reserved for
	future use).
	0x0000: lowest output level
	0x3FFF: highest output level
	$0x1FFF$ or $0x2000 \approx$ center
	level
	CMOS 0 – 3.3V.
	Read at the rising edge of
	ADCx_SAMPLE_CLK_OUT.
ADCx_SAMPLE_	Sampling clock input.
CLK_IN	Pinpoints the center of the
	ADCx_DATA_IN bits for
	reclocking at the receiving
	end.
	Index x is 1 or 2

	CMOS 0 – 3.3V.
DAC_SAMPLE_CLKOUT_P DAC_SAMPLE_CLKOUT_N	DAC sampling clock output. Sets the DAC sampling rate. 0-3.3V LVCMOS differential signal. Depends on selected chip rate: 80-160 MHzd
DAC <i>x</i> _DATA_OUT[15:0]	DACx digital samples output. 16-bit unsigned (also known as "offset binary") format. 0x0000: lowest input level 0xFFFF: highest input level 0x7FFF or 0x8000 \approx center level CMOS 0 – 3.3V. Read at the rising edge of DAC SAMPLE CLK IN
AUX_SPI[5:1]	SPI interface to control the two auxiliary DACs and ADC in real-time. See AD5621 serial 12-bit DAC specifications. See AD7276 serial 12-bit ADC specifications.

Operating input voltage range

Supply voltage	+4.5V min, +12V max
	650mA typ.

Absolute Maximum Ratings

Supply voltage	-0.5V min, +20V max
98-pin connector inputs	-0.5V min, +3.6V max

Important:

The I/O signals connected directly to the FPGA are NOT 5V tolerant!

Mechanical Interface

Schematics

The board schematics are available on-line at http://comblock.com/download/com 1800schematics.pdf

Pinout

USB

Both USB ports are equipped with mini type AB connectors. (G = GND). In both cases, the COM-1831 acts as a USB device.

Left Connector J4

2*12-bit baseband input samples, compatible with COM-30xx receivers (-C/-D firmware options)

Right Connector J8

Тор Bottom A1 B1 DAC SAMPLE CLK IN ADC1_SAMPLE_CLK_IN ADC1_DATA_IN(13) DAC1_DATA_OUT(15) ADC1_DATA_IN(12) DAC1_DATA_OUT(14) ADC1 DAC1_DATA_OUT(13) GND ADC1_DATA_IN(11) DAC1 DATA OUT(12) ADC1 DATA IN(10) DAC1_DATA_OUT(11) ADC1_DATA_IN(9) DAC1_DATA_OUT(10) ADC1_DATA_IN(8) DAC1_DATA_OUT(9) ADC1_DATA_IN(7) DAC1_DATA_OUT(8) ADC1_DATA_IN(6) DAC1_DATA_OUT(7) ADC1_DATA_IN(5) DAC1_DATA_OUT(6) ADC1_DATA_IN(4) DAC1_DATA_OUT(5) ADC1_DATA_IN(3) DAC1_DATA_OUT(4) ADC1_DATA_IN(2) ADC2_SAMPLE_CLK_IN DAC1_DATA_OUT(3) DAC1 DATA OUT(2) ADC2 DATA IN(13) ADC2_DATA_IN(12) DAC1_DATA_OUT(0) ADC2_DATA_IN(11) DAC SAMPLE CLK OUT P ADC2_DATA_IN(10) DAC_SAMPLE_CLK_OUT_N GND DAC2_DATA_OUT(15) ADC2_DATA_IN(9) DAC2_DATA_OUT(14) ADC2 DATA IN(8) DAC2_DATA_OUT(13) ADC2_DATA_IN(7) DAC2_DATA_OUT(12) ADC2_DATA_IN(6) DAC2 DATA OUT(11) ADC2_DATA_IN(5) DAC2_DATA_OUT(10) ADC2_DATA_IN(4) DAC2_DATA_OUT(9) ADC2_DATA_IN(3) ADC2_DATA_IN(2) DAC2_DATA_OUT(7) ADC_ DAC2_DATA_OUT(7) ADC_ DAC2_DATA_OUT(6) ADC_ DAC2_DATA_OUT(5) GND ADC_SAMPLE_CLK_OUT ADC_SAMPLE_CLK_OUT DAC2_DATA_OUT(4) DAC2_DATA_OUT(3) DAC2_DATA_OUT(2) DAC2_DATA_OUT(1) DAC2 DATA OUT(0) GND M&C_TX M&C_RX A49 B49 130004 2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM-3504 dual Analog<->Digital Conversions. (-A/-B firmware options)

Right Connector J8

This interface is compatible with the COM-4009 RF modulator (-C/-D firmware options)

I/O Compatibility List

(not an exhaustive list)

Right connector (J8)
<u>COM-3504</u> Dual Analog <-> Digital Conversions
2*16-bit 250 MSamples/s
COM-4009 400 MHz – 4.4 GHz Broadband RF
modulator
Left connector (J4)
COM-30xx RF/IF/Baseband receivers for frequencies
ranging from 0 to 3 GHz.
ranging from 0 to 3 GHz.

Configuration Management

This specification is to be used in conjunction with VHDL software revision 1 and ComBlock control center revision 4.0 and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1831 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

ECCN: 5A001.b.3

ComBlock Ordering Information

COM-1831 Burst-mode direct sequence spreadspectrum modem. 80 Mchip/s.

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com