Com Block

COM-1833 TDRSS MODULATOR & CHANNEL SIMULATOR

Key Features

The COM-1833 implements real-time <u>modulation</u> and <u>channel simulation</u> of a TDRSS user-to-ground link in four distinct blocks, each with distinct parameters controls:

- TDRSS customer modulator, including spread-spectrum and narrow-band PSK
- TDRSS transponder induced distortions
- Ground terminal induced distortions
- Orbit dynamic effects

Supported input signals:

- Raw (unmodulated) user data received through the LAN/TCP server input
- Internal PRBS11 test sequence
- Synchronous serial input

Output signals (specify at the time or order):

- SDDS or VITA49 formatted stream transmitted over gigabit Ethernet (up to 25 MSamples/s) by either UDP or TCP protocol.
- Modulated RF output

All signal processing is implemented within a single FPGA. The same hardware can be configured as TDRSS DSSS demodulator (COM-1826 firmware) or TDRSS modulator and channel simulator (this COM-1833 firmware), depending on the selected firmware.

- Modulations:
 - Spread-spectrum (BPSK, SQPN)
 3 MChips/s. Up to 300 Kbits/s per channel.
 - Narrow-band PSK(BPSK,QPSK,OQPSK,8-PSK) up to 6 MSymbols/s
- CCSDS error correction encoding:
 - \circ Reed-Solomon
 - Interleaving
 - o Convolutional
- Channel impairments:
 - o Additive white Gaussian noise
 - Distortion FIR filter with programmable taps
 - 16-path multi-path emulation (Rician fading)
- Monitoring and Control:
 - o Local (USB)

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2016 Issued 7/30/2016

- Remote (TCP-IP)
- Frequency reference:
 - Internal TCXO
 - o External 10 MHz
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- 90VAC 264VAC power supply

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1833.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Block Diagram

Configuration

This ComBlock assembly can be monitored and controlled centrally over a single connection with a host computer. Connection types are:

• USB

172.16.1.129

• TCP-IP/LAN

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1833 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1833 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

ComBlock Control Center	
File Operations Functions Help	
🔆 🔌 🗃 🎸 🚺 🖄 🖽 🚇	
COM1833A TDRSS modulator & channel sin	nulator
COM1833 TDRSS modulator & channel simulator Basic Settings	×
Input & network FEC encoding DSSS modulation PSK modulation Channel	el impairments Output signal & network
Static IP address2: 172 16 1 129	TCP servers port 1024: Input data ch1 port 1025: Input data ch2 port 1028: M&C port 1029: UDP control port 1280: Dynamic Doppler profile port 1281: reserved port 1282: reserved
Subnet mask: 255 255 0	MAC address2: 02:48:71:B0:54:01
Ch1 input selection: PRBS11 test sequence v	Ch2 input selection: PRBS11 test sequence v
port 1280: Dynamic Doppler profile 🗸 Upload	Send File to TCP server X
File	to send: SS modulator channel sim GbE output 001d\bin\doppler_profile.bin
RS-422 input bit rate: 150000.007 bits/s	Destination IP address: 172 16 1. 129
	destination port: 1280
Restore Default Apply	Send Cancel

COM1833 TDRSS modulator & channel simulator Basic Settings	×
Input & network FEC encoding DSSS modulation PSK modulation	Channel impairments Output signal & network
Reed-Solomon encoder 1 selection: CCSDS(255,223,16) \checkmark	Reed-Solomon encoder2 selection: Bypassed 🗸
Interleaving depth1: 5	Interleaving depth2: 1
Data Format ch 1: NRZ-L 🗸	Data Format ch2: NRZ-M v
Convolutional encoder 1	Convolutional encoder2
Restore Default Apply Ok	Cancel
COM1833 TDRSS modulator & channel simulator Basic Settings	×
Input & network FEC encoding DSSS modulation PSK modulation	Channel impairments Output signal & network
Enable DSSS modulator	Chip rate: \$077799.492 Chips/s
I-code: 2422 Octal	Q-code: 3633 Octal
I-channel symbol rate: 300000.012 Symbols/s	Q-channel symbol rate: 1000.017 Symbols/s
Output center frequency: 0 Hz	Output amplitude: 30000 0-65535
Spectrum inversion	Modulation: SQPN dual sources \checkmark
Restore Default Apply OF	k Advan Cancel

COM1833 TDRSS modulator & channel simulator Basic Settings					×	
Input & network FEC encoding DSSS modulation	PSK modulation	Channel impairments	Output signal	& network		
Enable PSK modulator		PSK sy	mbol rate:	6000000	Symbols/s	
Output center frequency:	0 Hz	Outpu	ut amplitude:	20000	0-65535	
Spectrum inversion			Modulation:	OQPSK 🗸]	
Channel filter: bypass bypass 20% rolloff 30% rolloff 35% rolloff						
40% rolloff Restore Default	Apply	Ok Ac	dvan	Cancel		

COM1833 T	COM1833 TDRSS modulator & channel simulator Basic Settings				×	
Input & network	FEC encoding	DSSS modulation	PSK modulation	Channel impairments	Output signal & network	
AWGN	-	٩	loise amplitude: [10 0-655:	35	
Short-Term Fadir	e: Auto mode		~			
Maximum I	Doppler frequen	cy:	83 Hz	Delay	y spread:	500 ns
Mean pat	h amplitude:	0.0	67 [0 - 1.0]	Direct LOS amplitud	de: 1 [0-1.0], 0	for Rayleigh fading model
	Res	tore Default	Apply	Ok A	dvan Cancel	

COM1833 TDRSS modulator & channel simulator Basic Settings				
Input & network FEC encoding DSSS modulation	n PSK modulation	Channel impairments	Output signal & network	
			Set Date/Time	
output sampling rate: 6250000.006	Samples/s	Inte	rnal time: 165.713 s	
Output frame counter:	5075872	Static	IP1 address: 172 16 1 127	
Gateway address: 172 16	13	MAC	address1: 02:48:71:B0:54:00	
● SDDS ○ VITA49			UDP O TCP server @ port 1028	
UDP Destination IP address: 172 16	. 1. 1		UDP destination port: 29495	
Restore Default	Apply	Ok Ad	dvan Cancel	

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write. Definitions for the <u>Control registers</u> and <u>Status registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Several key parameters are computed on the basis of two frequency references: the 125 MHz internal processing clock \mathbf{f}_{clk_p} or of the 160 MHz DAC clock \mathbf{f}_{clk_cdec}

Transmitter	
Parameters	Configuration
Channel 1	0 = disabled
modulator input	I = TCP server at port 1024
selection	2 = PRBS11 test sequence
	3 = zeros
	4 = synchronous serial via left
	connector
	5 = periodic 32-bit sequence
	0x"DEADBEEF"
	REG1(2:0)
Channel 2	0 = disabled
modulator input	1 = TCP server at port 1025
selection	2 = PRBS11 test sequence
	3 = zeros
	REG1(5:4)
Serial tx bit rate	Set the nominal input bit rate for the synchronous serial input. A serial clock will be supplied to the data source. Must be consistent with the modulator symbol rate, modulation type, FEC rate.
	$\mathbf{f}_{input bit rate tx} * 2^{32} / \mathbf{f}_{clk_p}$
	REG31 (LSB) – REG34 (MSB)

FEC encoding / interleaving				
Parameters	Configuration			
Channel 1 Reed-	5 = CCSDS(255,223,16)			
Solomon encoder	6 = CCSDS(255,239,8)			
type	REG2(3:0)			
Channel 2 Reed-	5 = CCSDS(255,223,16)			
Solomon encoder	6 = CCSDS(255,239,8)			
type	REG2(7:4)			
Channel 1 Reed-	Interleaving depth:			
Solomon frame	1 means no interleaving			
interleaving	Valid settings: 1,2,3,4,5,8			
depth	REG3(3:0)			
Channel 2 Reed-	Interleaving depth:			
Solomon frame	1 means no interleaving			
interleaving	Valid settings: 1,2,3,4,5,8			
depth	REG3(7:4)			
Reed-Solomon	Enable(1) or bypass(0)			
encoder enable	REG4(0) channel 1 RS encoder			
	REG4(1) channel 2 RS encoder			
Convolutional	Enable(1) or bypass(0)			
encoder enable	REG4(4) ch. 1 convolutional			
	encoder			
	REG4(5) ch. 2 convolutional			
	encoder			

DSSS modulator				
Parameters	Configuration			
DSSS	0 = disabled			
modulator	1 = enabled			
enable				
	REG30(7)			
Chip rate	The nominal chip rate is			
(fchip rate)	3.077799479166 Mchips/s. However, the			
	design is somewhat more flexible.			
	Alternative chip rates can be entered			
	here			
	32-bit integer expressed as			
	fchip rate * 2^{32} / f_{elk_dae} .			
	The maximum practical chip rate is			
	$\mathbf{f}_{\mathbf{clk}_{\mathbf{p}}}$ /2.			
	Nominal chip rate: 0x04ECAAAB			
	REG5 (LSB) – REG8 (MSB)			
I Code	Linear feedback shift register			
	initialization.			
	As per [1]			
	REG9 LSB			
0.0.1	REGI0(2:0) MSb			
Q Code	REGITLSB DEC12(2:0) MSh			
	The Laborated and a set			
I channel	in demondently, of the arreading and			
symbol	ndependently of the spreading code			
f	$f = x^{32} / f_{max}$			
symbol_rate	Isymbol_rate Z / Iclk_dac			
	Example: "0028E5C3" represents 100			
	K symbols/s			
	REG13 (LSB) – REG16 (MSB)			
O channel	The Q-channel symbol rate can be set			
symbol rate	independently of the spreading code			
f _{symbol} rate	period as			
	$\mathbf{f}_{symbol rate} * 2^{32} / \mathbf{f}_{clk dac}$			
	REG17(LSB) – REG20 (MSB)			
Modulated	16-bit amplitude scaling factor for the			
signal	modulated signal.			
amplitude	The maximum level should be adjusted			
	to prevent saturation. The settings may			
	vary slightly with the selected symbol			
	rate. Therefore, we recommend <u>checking</u>			
	for saturation when changing either the			
	symbol rate or the signal gain.			
	REG21 = LSB			
	REG22 = MSB			
Output	Fixed frequency offset applied to the			
center	output samples. It is used for fine			
frequency	frequency corrections, for example to			
(f _c)	correct clock drifts.			
	32-bit signed integer (2's complement			
	representation) expressed as			

	$f_c * 2^{32} / \frac{f_{clk_dac}}{f_{clk_dac}}$		
	T 11.1		
	In addition to this fixed value, an		
	optional time-dependent frequency		
	profile can be entered. <u>See frequency</u>		
	<u>profile table</u> .		
	REG25 (LSB) – REG28 (MSB)		
Spectrum	Invert Q bit		
inversion	0 = off		
	1 = on		
	REG30(0)		
BPSK /	0 = BPSK		
SQPN	1 = SQPN		
	~		
	REG30(1)		
SQPN	0 = dual source: independent symbol		
single/double	rates on I and Q channels		
source	1 = identical data on I and Q channels		
	(prior to coherent sum)		
	REG30(2)		
Data	0 = NRZ-L		
formatting I-	1 = NRZ-M		
<mark>channel</mark>	2 = NRZ-S		
	REG10(5:3)		
Data	0 = NRZ-L		
formatting	1 = NRZ-M		
Q-channel			
	2 = NRZ-S		

PSK modulator			
Parameters	Configuration		
PSK	0 = disabled		
modulator	1 = enabled		
enable			
	REG36(7)		
PSK type	0 = BPSK		
	1 = QPSK		
	2 = OQPSK		
	11 = 8 - PSK		
<u> </u>	REG35(5:0)		
Spectrum	Invert Q bit		
inversion	0 = off		
	I = on		
	REG35(6)		
Chang-1	0 = hypassed		
Channel	1 = root raised cosine filter 20% rolloff		
filter	2 = root raised cosine filter 25% rolloff		
	3 = root raised cosine filter 30% rolloff		
	4 = root raised cosine filter 35% rolloff		
	5 = root raised cosine filter 40% rolloff		
	REG36(2 downto 0)		
Symbol rate	The PSK modulator symbol rate is expressed		
formbol roto	as		
-symbol_rate	f _{symbol_rate} * 2 ³² / f _{clk_dac}		
	Example: "0028F5C3" represents 100		
	Ksymbols/s.		
	REG37 (ISB) = REG40 (MSB)		
Output cent	eFixed frequency offset applied to the output		
frequency	samples. It is used for fine frequency		
(f)	corrections for example to correct clock		
(*c)	drifts		
	32-bit signed integer (2's complement		
	representation) expressed as		
	$f_c * 2^{32} / f_{elk dag}$		
	In addition to this fixed value, an optional		
	time-dependent frequency profile can be		
	entered. See frequency profile table.		
	REG41 (LSB) – REG44 (MSB)		
Modulated	16-bit amplitude scaling factor for the		
signal	modulated signal.		
amplitude	The maximum level should be adjusted to		
	prevent saturation. The settings may vary		
	slightly with the selected symbol rate.		
	Therefore, we recommend checking for		
	saturation when changing either the symbol		
	rate or the signal gain.		
	REG45 = ISB		
	REG46 = MSB		

Multi-Path Fac	ling Configuration
(Auto mode)	
Mode	1 = clears all paths parameters such as amplitude scaling coefficients, delays, phase offsets, frequency offsets. Only the direct path amplitude is left unchanged.
	2 = manual mode. User is responsible for defining the multi-path parameters.
	3 = auto mode, single draw: multi-path random parameters are generated automatically for all paths.
	4 = auto mode. Multi-path random parameters are periodically updated automatically for all paths. The update rate is approximately 20ms
	REG91(2:0)
Maximum	Maximum Doppler frequency in Hz.
Doppler f_m	
Dalaa ayyaa d	<u>REG92 (LSB) – REG94 (MSB)</u>
standard	Expressed in ns.
deviation Λ	distribution the mean equals the
	standard deviation.
	REG95 (LSB) - REG97 (MSB)
Multi-path	Fixed-point format 0.16
amplitude	
mean.	REG98 (LSB) – REG99 (MSB)
Direct Path	k _d is the direct, line-of-sight,
(line-of-sight)	component amplitude. The Rician
amplitude k _d	Fading is disabled when k_d is set to
	Fixed-point format 0.16
	REG100 (LSB) – REG101 (MSB)
Multi-Path Fac	ling Configuration
(Manual mode)	
Because of the o	lynamic (frequently changing) nature of
these parameter	s, storing values in non-volatile registers
"SRT" Set Regi	ster Temporary command
Parameters	Configuration
Path index i	Indirect addressing for the paths
	parameters. This field identifies the
	path associated with the delay, phase
	rotation and frequency offset below.
	Path index 1 is in the range 0 to 15.
	REG102(4:0)
Coefficient W _i	Unsigned (positive) 16-bit precision
	coefficient. 16 coefficients are referred
	to by their path index i in the range 0 to 15.
	The amplitude scaling coefficient W _i

	are expressed as a numerical value in		
	0.16 fractional binary format (meaning	Channel impai	rments
	16 bits following the decimal point).	Parameters	Configuration
Near unit gain is 0xFFFF. $REG103 = W_i$ (7:0) $REG104 = W_i$ (15:8)	Additive White Gaussian Noise gain	16-bit amplitude scaling factor for additive white Gaussian noise. Because of the potential for saturation please check for saturation	
Delay D _i	Delay expressed as number of input samples. Valid range 0 – 511 samples.		when changing this parameter. REG47 = LSB REG48 = MSB
Phase Rotation φi	$\begin{array}{l} \text{REG105} = \text{D}_{i} (7:0) \\ \text{REG106} (0) = \text{D}_{i} (8) \\ \end{array}$ Phase rotation at the start of the simulation. As this is an initial	Reset time	The simulator internal time is set to zero at power up. It can be set to the proper time/date (typically the time since January 1, 1970, 00:00:00
cond are c Unsi	condition, changes to the phase rotation are only enacted upon software reset. Unsigned 12-bit number representing a phase rotation in the range 0 (inclusive)		GMT) by writing to control register REG90(0).
	to 360 degrees (exclusive) by steps of approximately 0.1 deg.		The reset time format depends on the SDDS or VITA49 output format selection.
	$\begin{array}{l} \text{REG107} = \varphi_1 (7:0) \\ \text{REG108}(3:0) = \varphi_i (11:8) \end{array}$		<u>SDDS:</u>
$\begin{array}{c} Frequency\\ offset \ f_i \end{array}$	Signed 24-bit number. Computed as f_i /decimated sampling rate $*2^{24}$ For example, since the sampling rate is		Time in 250ps units since January 1, 1970, 00:00:00 GMT REG82(LSB) through REG89(MSB)
	$f_{elk_{dac}} = 160$ MHz, the frequency offset step size is 9.5 Hz.		<u>VITA49</u> : REG82 (LSB) – REG85(MSB) 32 LSBs fractional-seconds timestamp
	$\begin{aligned} \text{REG109} &= f_i (7:0) \\ \text{REG110} &= f_i (15:8) \\ \text{REG111} &= f_i (23:16) \end{aligned}$		time timestamp is reset every second.
			32-bit integer-seconds timestamp expressed in seconds.
		Set time	Writing 1 to this register sets the simulator local time as defined in control registers 82 through 89.

REG90(0)

GbE LAN output					
Parameters	Configuration				
Sampling rate	The modulated baseband samples,				
(f resampling)	including impairments, are resampled				
	prior to transmission over GbE.				
	The resampling rate is a 32-bit signed				
	integer expressed as				
	$\mathbf{f}_{resampling} * 2^{32} / \mathbf{f}_{clk_p}$				
	For example 0x33333333 for 25				
	MSamples/s				
	Hint: to disable the LAN output, set the				
	sampling rate to zero.				
	DEC70 (LOD) DEC01 (MOD)				
Commission format	$\frac{\text{REG}/8(\text{LSB}) - \text{REG81}(\text{MSB})}{\text{T}}$				
samples format	The samples are sent to the receiver				
selection	under test via a gigabit Einernet LAN, u_{sing} either SDDS (0) or VITA 40(1)				
	formatting				
	formatting.				
	RFG49(0)				
Output protocol	The samples are sent to the receiver				
	under test via a gigabit Ethernet LAN.				
	using either UDP or TCP protocol.				
	In the TCP case, the				
	modulator/simulator acts as a TCP				
	server. The receiver under test must				
	first initiate a TCP connection with this				
	TCP server at port 1028.				
	Select UDP (0) or TCP server (1)				
ID1 c c	REG49(4)				
IPT static	Local 4-byte IPv4 address used for				
(LANxB	SDDS/VITA49 output stream.				
connector on	addrass 172 16 1 128				
backpanel)	The new address becomes effective				
	immediately (no need to reset the				
	ComBlock).				
	REG50 (MSB) - REG53 (LSB)				
IP1 destination	4-byte IPv4 address				
IP address	Unicast or multicast destination IP				
	address for SDDS/VITA49 output				
	stream when selecting UDP protocol.				
	Ignored when configured as TCP				
	server.				
	REG54 (MSB) – REG57(LSB)				
IP1 Destination	UDP destination port for SDDS/VITA49				
ports	output stream when selecting UDP				
	protocol.				
	Ignored when configured as TCP server.				
	REG58(LSB) – REG59(MSB)				
IP2 address	Local 4-byte IPv4 address used for				
(LANxA	modulator data input, dynamic profiles,				
connector on	monitoring and control.				
Uackpaner)					

	Example : 0x AC 10 01 80 designates address 172.16.1.128 The new address becomes effective immediately (no need to reset the ComBlock). REG68 (MSB) – REG71 (LSB)
Subnet mask	REG60 (MSB) - REG63(LSB)
Gateway IP address	REG64 (MSB) – REG67(LSB)
MAC addresses LSB	Each LAN MAC address is tied to a <u>almost</u> unique ID embedded in each FPGA. To minimize the probability of identical hardware IDs, append the user-defined REG236 byte as MAC address LSB. Usage: defined once at initial installation.

(Re-)Writing to control register **REG111** is recommended after a configuration change to enact the change.

Status Registers

Parameters	Monitoring			
Hardware	At power-up, the hardware platform			
self-check	performs a quick self check. The result is			
	stored in status registers SREG0-9			
	Properly operating hardware will result in			
	the following sequence being displayed.			
	SREG0-SREG9 = 01 E1 1D vv 1E 93 10 22			
	22 03			
External 10	1 = detected			
MHz	1 - detected			
presence	0 - Imssing			
тср	SKE09(7)			
connections	D't 0 to the section, 0 otherwise			
connections	Bit 0: monitoring & control, port 1028			
	Bit 1: input data channel 1, port 1024			
	Bit 2: input data channel 2, port 1024			
	Bit 3: Doppler profile, port 1280			
	Bit 4: Attenuation profile, port 1281			
	Bit 5: Delay profile, port 1282			
	SREG10(5:0)			
MAC	Unique 48-bit hardware address (802.3).			
address1	Add one to the last byte to get MAC			
	address2.			
	In the form SREG11:SREG12:SREG13:			
	:SREG16			
Time	64-bit internal time.			
	Two different formats depending on the			
	selected SDDS or VITA49 output format:			
	1			
	SDDS:			
	$\overline{SREG17}$ (LSB) – $SREG24$ (MSB)			
	64-bits Expressed in 250ps units.			
	VITA49:			
	$\frac{1}{1}$ SREG17 (LSB) – SREG20(MSB)			
	32 I SBs fractional-seconds timestamn			
	expressed in 256ps units. This real time			
	timestamp is reset every second			
	timestamp is reset every second.			
	SPEG21 (LSB) SPEG24(MSB)			
	32 bit integer seconds timestern expressed			
	in seconds			
Output frame	Cumulative SDDS/VITA49 frame counter.			
counter	Each frame contains 1024 bytes = 256			
	complex samples.			
	This counter is different from the frame			
	counter in the SDDS header (which only has			
	17 bits and skip one count every 32 frames).			
	SREG25 (LSB) – SREG28(MSB)			
Saturation	Proper operation is predicated on operating			
	in a linear channel i e one without			
	saturation Saturation may occur after			
	changing the symbol rate the signal lavel or			
	the noise level Please verify the absence of			
	acturation by reading this status mainten			
	saturation by reading this status register			

	after adjusting these controls.				
	Saturation occurrence in the last one second				
	window for the following signals:				
	Bit 0: DSSS modulator output				
	Bit 1: PSK modulator output				
	Bit	2: noise I-channel			
	Bit	3: noise O-channel			
	Bit	4: signal + noise, I channel			
	Bit	5: signal + noise, O channel			
	Bit	6: multi-path, I channel			
	Bit	7: multi-path, Q channel			
		1 / 2			
	SR	EG29			
Nominal	Exp	ected center frequency: sum of the fixed			
center	center frequency and the dynamic <u>frequency</u>				
frequency	profile table.				
	SREG41 (LSB) – SREG44 (MSB)				
Built-in mod	ulato	r SNR calibration			
Parameters	Mo	nitoring			
Measured		SREG61(LSB)			
modulated sig	nal	SREG62			
power		SREG63(MSB)			
Measured		SREG64(LSB)			
AWGN powe	r	SREG65			
(Noise		SREG66(MSB)			
bandwidth is					
6.25 MHz)					
FPGA configu	ratio	n options			
Parameters		Monitoring			
DACs_EN		DAC interface instantiated (1) or not			
		(0)			
		SREG30(0)			
LEFT_MODULE		0 = SDDS/VITA-49 GbE output			
		enabled			
		1 = synchronous serial input enabled			
		SREG30(1)			

Multi-byte status variables are latched upon (re-)reading SREG7.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control

Center. Click on the button to start, then select the signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal	Buffer
		sampling	length
		rate	(samples)
1: Modulated I-channel	8-bit	f _{clk_dac}	512
	signed		
2: I-channel after	8-bit	f _{clk_dac}	512
impairments and	signed		
AWGN			
Trace 2 signals	Format	Nominal	Buffer
		sampling	length
		rate	(samples)
1: Modulated Q-channel	8-bit	f _{clk_dac}	512
	signed		
2: Q-channel after	8-bit	f _{clk_dac}	512
impairments and	signed		
AWGN			
Trace 3 signals	Format	Nominal	Buffer
		sampling	length
		rate	(samples)
1: Dynamic Doppler	8-bit	f _{clk_dac}	512
profile (bits 31:24)	signed		
2: Dynamic Doppler	8-bit	f _{clk_dac}	512
profile (bits 26:19)	signed		
3: Dynamic Doppler	8-bit	f _{clk_dac}	512
profile (bits 21:14)	signed		
4: Dynamic Doppler	8-bit	f _{clk_dac}	512
profile (bits 16:9)	signed		
Trigger Signal	Format		
1: Doppler dynamic	Binary		
profile playback			

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the $f_{elk_{chac}}$ DAC sampling clock as real-time sampling clock.

In particular, selecting the $f_{elk, dae}$ DAC sampling clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope example, showing SQPN spread-spectrum modulation with very little additive white Gaussian noise. Blue = I-channel, Red = Q-channel

Digital Test Points

Test	Definition				
Point					
A1	SDDS/VITA-49 resampling clock				
A2	SDDS/VITA-49 UDP frame transmit				
	acknowledgement				
A3	SDDS/VITA-49 UDP frame transmit NAK				
A4	Doppler dynamic profile playback state				
A5	Saturation at DSSS modulator output				
A6	Saturation at PSK modulator output				
A7	Saturation at the AWGN generator output				
A8	Saturation while summing modulated signal and AWGN				

Operation

Input data stream

The input data stream can originate from three sources:

- 1. Internal pseudo-random sequence generator (this facilitates measuring the transmission channel bit error rate)
- 2. External data stream sent to the TCP server
- 3. Synchronous serial data stream. The simulator provides an output clock and expects the input data bit to be stable at the clock falling edge (i.e. the source generates the data bit at the rising edge).

The synchronous serial data input feature is mutually exclusive with the SDDS/VITA-49 output [connector cannot be shared]

Monitoring & Control

M&C is possible over USB and LAN/TCP.

A pre-requisite for using USB is the prior installation of the ComBlock USB driver.

Monitoring and control is through the USB and LAN xA connectors on the back panel.

At manufacturing, the default M&C LAN address is 172.16.1.2. It can be subsequently changed via USB or LAN/TCP.

The LAN xA connector is also shared with TCP connections for modulator inputs and dynamic profiles inputs.

SDDS / VITA49 output stream

The LAN xB connectors on the back panel are reserved for SDDS or VITA49-formatted output streams.

The output stream is sent using UDP source port 1280 [destination port is user-selectable] or TCP-IP server port 1028. Control register REG49(4) selects UDP versus TCP.

Even though modulation and channel impairments are implemented at $f_{clk_{clac}}$ 160 MSamples/s, the GbE LAN limits the final sampling rate to 25 MSamples/s. The sampling rate is user programmable.

The output frames are time-tagged with a 64-bit local time.

External frequency reference

A 10 MHz external frequency reference is recommended for proper operation. The electrical characteristics are as follows:

Sinewave, clipped sinewave or squarewave. AC-coupled.

Minimum level: 2Vpp. Maximum level: 5Vpp.

Using the same 10 MHz frequency reference at the modulator and the receiver under test eliminates the occurrence of buffer underflow or overflow conditions when UDP is the protocol used to convey samples.

When the output signal is conveyed over TCP, the use of a higher stability 10 MHz frequency reference is not required to prevent underflow or overflow conditions, as the TCP protocol informs the data source of flow-control conditions at the data sink.

Simulator time

The simulator time is reset to 0 at power up. Another way to set the simulator time is through the GUI: in the "Output signal and network" panel, click once on the "Set Date/Time" button to transfer the PC current date and time to the simulator.

simulator			
ıgs		23	1
Channel impairment	s Output signal & netw	ork	
Set	Date/Time		
Internal time:	144609423.938 s	3	
Confirm resettin	g the simulator date/t	time	
This a	ction will transfer this	CPU date/	time to the simulator. Continue?
	Yes		lo

Frequency profile table

A dynamic Doppler profile can be enacted by loading a time-tagged table to the simulator.

The table is entered in one TCP session whereby the user (TCP client) opens a TCP connection to port 1024 and writes the entire frequency table. The table consists of a 64-bit start time (same reference as the SDDS time tag, i.e. 250ps units) followed by up to 4096 32-bit frequency samples. Each sample represents a nominal center frequency expressed in units of 160 MHz / 2^{32} (about 37 mHz steps), sampled at 1s intervals.

The byte order is MSB first.

The frequency table is read (played-back) every second starting at the specified start time. The receiver interpolates linearly 64x between successive 1s samples so as to minimize discontinuities. This ensures phase and frequency continuity. The modulator samples undergo frequency translation using this frequency bias.

Table playback is mutually exclusive with table upload. Opening a new TCP session to upload a new table will immediately stop any playback in progress.

Because the table is quite small (131Kbits max), the TCP upload time (2-5ms) is insignificant relative to the playback duration.

A utility is included in the ComBlock Control Center to upload a binary frequency profile table:

Multi-path simulator

The multi-path section of the simulator can be operated in either **auto** or **manual** mode.

In auto mode, the multi-path parameters are statistical variables generated automatically (as a one-time or periodic random draws) by the ComBlock Control Center. The random variables are drawn on the basis of usersupplied system-level parameters such as maximum Doppler, delay spread, indirect path mean amplitude, etc. In manual mode, users can program each path parameter (delay, phase rotation, frequency offset, amplitude scaling coefficient) by running a custom program on the host computer and communicating in real-time over a LAN/TCP or USB connection. (see the code template in CD-ROM).

Short-Term Fading

The short-term fluctuation in signal amplitude is due to multi-path signals adding coherently in a constructive or destructive way. Even small changes in distance of the order of the wavelength can cause significant changes in amplitude at the receiver.

In essence, the COM-1524 is a real-time implementation of the following general multi-path equation:

$$w(t) = \sum_{k=1}^{N} \alpha_k . z(t - \tau_k) . e^{-j2\pi (f_m \cos \psi_k + \varphi_k)t}$$

where

z(t) is the complex transmitted signal,

w(t) is the complex received signal,

N the number of paths,

 α_k the kth path amplitude,

 τ_{k} the k^{th} path delay,

 ψ_k the angle of incidence of the kth received path with respect to the receiver motion, ϕ_k an initial phase condition for the kth path, f_m the maximum Doppler frequency offset. The user-specified parameters are

(a) The maximum Doppler frequency f_m , which is related to the transmitted radio frequency f_0 and the speed v of the receiver relative to the transmitter

$$f_m(Hz) = v(m/s) \cdot \frac{f_0(MHz)}{300}$$

- (b) The delay spread Δ_{τ} , a function of the environment type: in-building, open area, suburban area, urban area, etc.
- (c) The mean path amplitude.

 α_k , τ_k , ψ_k , ϕ_k are random variables. For simplicity, these random variables are modeled as independent.

The delay spread τ_k is modeled as an exponential distribution with a probability density function expressed as

$$f(\tau) = \frac{1}{\Delta_{\tau}} \cdot e^{-\tau / \Delta_{\tau}}$$

where

 Δ_{τ} is the delay spread standard deviation, as specified by the user. Physically, this distribution expresses the fact that most of the multi-path signals are grouped just after the earliest received signal. Signal with large delays are seldom received.

The initial phase condition φ_k is modeled as uniformly distributed over $[0, 2\pi[$.

The angle of incidence ψ_k is also modeled as uniformly distributed over $[0, 2\pi[$.

The path amplitude α_k is also modeled as an exponential distribution.

In the case when there exists a line-of-sight component (**Rician Fading**), the path index 0 represents the direct path between transmitter and receiver. The strength of the direct component $\alpha_0 = k_d$ is user-specified. To disable the LOS path, set k_d to zero. When Rician Fading is enabled, the direct path parameters (delay τ_0 , the angle of incidence ψ_0 and the initial phase offset ϕ_0) are set to zero.

Multi-path implementation

The modulated samples are subjected to a 16-path multi-path simulation prior to adding thermal noise. The implementation is illustrated below:

Path 1 is the direct path, and as such represents the reference against which the other paths are described in terms of relative delay and relative frequency offset. The path 1 gain can be set to zero to simulate the absence of line of sight.

The path parameters are random variables that are generated either by the GUI or by custom user-code writing control registers REG103 through REG112.

AWGN Algorithm

The Box-Muller algorithm is used to transform a uniformly distributed random variable to a Gaussian-distribution random variable. A description of the algorithm, together with an elegant FPGA implementation method can be found in reference [1].

The MATLAB program below illustrates how the algorithm works:

```
% Box Muller algorithm verification
nsamples = 1000000;
% generate two independent uniform
distributed random variables
x1 = rand(nsamples,1);
x2 = rand(nsamples,1);
% transform the distributions
```

```
f = sqrt(-log(x1));
g = sqrt(2.0)*cos(2*pi*x2);
%gaussian distribution
n = f.*g;
% plot histogram
hist(n,500)
% standard deviation is 1.0
std(n)
% mean is zero
mean(n)
```

[1] "Efficient FPGA Implementation of Gaussian Noise Generator for Communication Channel Emulation". Jean-Luc Danger, Adel Ghazel, Emmanual Boutillon, Hedi Laamari. 2002.

The resulting noise sample distribution is shown below:

Noise sample histogram (130K samples) Mean = 0. Standard deviation = 128

The plots below illustrate how accurate the noise generation is, by comparing the erfc function (red) with the AWGN normalized distribution (blue)

Theoretical erfc function (red) vs actual AWGN normalized distribution measurements (blue). Range 0 - 1, 130K samples.

The theoretical curve and the measured statistical distribution of noise samples are nearly superposed.

Theoretical erfc function (red) vs actual AWGN normalized distribution measurements (blue). Range 1-4, 130K samples.

Load Software Updates

From time to time, ComBlock software updates are released.

To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

File Operations F	ntrol Cent Functions	ter Help					
COM5003 1	ICP-IF	/ USB (GATE	WAY			
-COM800	COM500	3 TCP-IP / I	JSB GAT	EWAY			X
- COM1: - COM - COM - CO	Personalia Index 1 2 3 4 5 6 7 -Add/Rem Index 3	Personality 1400 5003 5003 000 000 000 000 000 000 000	Option B B B B B B Sonality Option B	Default D Password	Authorized Yes Yes Yes Yes Yes Yes Yes Yes	Boot Protection Yes No No No No No No Add	Address 0 262144 524288 0 0 0 0
				Clo	se		
172.16.1.128		1					<u>></u>

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

Two firmware options are available for this receiver:

-A firmware uses an internal VCTCXO frequency reference.

-B firmware option requires an external 10 MHz frequency reference.

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in J3 and during power-up. This prevents the FPGA configuration and restore USB communication [LAN communication is restored only if the IP address is known/defined for the personality index selected as default]. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

UDP Reset

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset the modem (and therefore the TCP-IP connection) gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a client 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-1833 is at a remote location.

The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-1833.

TCP-IP connections can also be cleared remotely from the ComBlock Control Center as illustrated below:

C C	ComBlock Control Center			
File	Operations Functions	Help		
55	Communication Setup	Ctrl+S		
-	Detect ComBlocks	Ctrl+D		
	Settings	Ctrl+E		
	Personalities	Ctrl+M		
	Status Registers	Ctrl+R		
	TCP Reset TCP/IP Cor	nection.		
F	leset TCP/IP Connecti	on 🔀		
Enter the IP-address of the ComBlock that you would like to reset: 172 16 1 130				

Troubleshooting Checklist

Device is not responsive after power up:

- The device typically takes up to 30 seconds to boot up after power up.
- If still not responsive after 30 seconds, recycle the power. Wait at least 15 seconds after power off to turn the power on again.

Device does not communicate with the ComBlock Control Center:

• Make sure an external 10 MHz frequency reference is present prior to powering up the receiver. This applies only when the –B firmware option (external 10 MHz frequency reference) is selected by default.

FPGA occupied space

MMCM

2

The current VHDL code uses less than half the FPGA resources (XCA7A100T) as shown below:

6

33.33

Configuration Management

This specification is to be used in conjunction with VHDL software revision 0 and ComBlock control center revision 3.10h and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1833 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

Reference Documents

[1] Space Network Interoperable PN Code Libraries 451-PN CODE-SNIP

ComBlock Ordering Information

COM-1833 TDRSS modulator & channel simulator

Configuration options:

- LAN/TCP server input, GbE SDDS/VITA-49 output
- RS-422 and LAN/TCP server inputs, RF output.

ECCN: 5A001.b.3

MSS • 845-N Quince Orchard Boulevard• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com