

COM-1849 TCP STREAM TO 32/64 PARALLEL DIGITAL OUTPUTS

Key Features

- Converts a TCP stream received over Gigabit Ethernet to 32- or 64-bit digital output samples.
- Electrical format: differential LVDS (32-bit max) or single-ended LVTTL (64-bit max)
- External sampling clock or internally generated output sampling clock.
- User-defined output sample width: 1 through 8 Bytes.
- Maximum output sampling rate > (800 Mbits/s / number of output bits), e.g. 100 Msamples/s for 8-bit wide outputs
- Internal TCP server awaits for connection from the TCP client.
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3.5" module for ease of prototyping. Single 5V supply with reverse

voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB, TCP-IP/LAN

or connections via adjacent ComBlocks

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1849 is to use the **ComBlock Control Center** software (downloadable <u>here</u>). In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the \checkmark *Detect* button, next click to highlight the COM-1845 module to be configured, next click the Settings button to display the *Settings* window shown below.

COM184	9A TCP to	o 64	bit dig	ital outp	ut
COM18	49A TCP to 64bi	it digita	al output S	Settings	×
Regis	All register	values i	n HEX		
	Reg 0	00	Reg 9	AC	
	Reg 1	AC	Reg 10	10	
	Reg 2	10	Reg 11	01	
	Reg 3	01	Reg 12	03	
	Reg 4	80	Reg 13	00	
	Reg 5	FF	Reg 14	00	
	Reg 6	FF	Reg 15	00	
	Reg 7	FF	Reg 16	00	
	Reg 8	00	Reg 17	00	
Conf	guration				

Control Registers

The module configuration parameters are stored in volatile memory.

General			
Parameters	Configuration		
Internal/External frequency	0 = internal TCXO as frequency reference.		
reference	1 = external. Use the 10 MHz clock externally supplied through the J7 SMA connector as frequency reference. REG0(0)		
Byte to Word alignment method in TCP stream	0 = unframed Byte stream. The first Byte received after the TCP connection is the first Byte in the first output sample word.		
	1 = integer number of output sample words encapsulated within a HDLC frame		
	REG0(1)		
HDLC frame	0 = enabled		
CRC check	1 = bypassed		
	Ignored when HDLC is disabled (unframed Byte stream)		
	REG0(2)		
Output sample	Valid entries:		
Bytes)	1,2,3,4,5,6,7,8 Bytes for LVTTL samples width		
	1,2,3,4 Bytes for LVDS samples width		
	Important: the HDLC frame payload size must always be an integer multiple of output samples. REG0(7:4)		
Output sampling	0 = external sampling clock		
clock selection	1 = internally generated output sampling clock. Frequency determined by the NCO control below.		
	REG13(0)		
Ouput sampling clock frequency	If clock is generated internally, its frequency \mathbf{f}_s is determined by the 32-bit word computed as $\mathbf{f}_s * 2^{32} / 333.333$ MHz		
	REG17 (MSB) – REG14 (LSB)		

Network Interface			
Parameters	Configuration		
Static IP	4-byte IPv4 address.		
address	Example : 0x AC 10 01 80 designates		
	address 172.16.1.128		
	REG1 (MSB) - REG4 (LSB)		
Subnet mask	REG5 (MSB) – REG8(LSB)		
Gateway IP	REG9 (MSB) – REG12(LSB)		
address			

Status Registers

Parameters	Monitoring		
Hardware	At power-up, the hardware platform		
self-check	performs a quick self check. The result		
	is stored in status registers SREG0-9		
	Properly operating hardware will result		
	in the following sequence being		
	displayed:		
	01 F1 1D xx 1F 93 10 00 22 07.		
LAN PHY ID	0x22		
	SREG8		
LAN MAC	SREG9 – SREG14		
address			
ТСР	SREG15(0) M&C connected		
connections	SREG15(1) Data stream connected		
Sampling rate	Expressed in Hz		
	SREG(16)(LSB) - SREG(19)(MSB)		

Operation

Prerequisite

In order to perform the one-time initial configuration, one must first install the ComBlock USB driver. See https://comblock.com/gettingstarted.html

Network configuration

The built-in TCP server must be assigned a static address consistent with the user's LAN. This operation is typically done once before connecting the COM-1849 to a different LAN. To that effect, connect the supplied USB cable between a PC and the COM-1849.

In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the A Detect button, next click to highlight the COM-1849 module to be configured, next click the Settings button to display the Settings window.

Enter the static IP address in control registers REG1-REG4, in hexadecimal using upper case characters. For example AC 10 01 80 designates the address 172.16.1.128

Click on the Apply or OK button. Wait 10 seconds before turning power off.

Note: the static address must be consistent with existing LAN, namely:

- same first three address numbers as the PC
- unique fourth address number not already in use over the LAN

ТСР

Before sending data over the LAN, the PC (TCP client) must first establish a TCP connection with the COM-1849 (TCP server) at IP port 1024.

Once the TCP connection is established, the PC can send the formatted data stream.

As the TCP protocol includes an end-to-end flowcontrol mechanism, the PC application should try to send data as fast as the TCP connection allows it. When the application calls the send function to send a data buffer, the send function will return the actual number of Bytes sent.

Stream format

Output samples data sent over the TCP connection can be carried as an unformatted Byte stream, or encapsulated in a HDLC frame, based on the control register REG1(1) selection.

Byte-wise HDLC conveys the Byte to word alignment information. Each HDLC frame must contain an integer number of samples/words.

The HDLC rules are as follows:

- A HDLC frame is delineated with 0x7E flags at the start and end.
- The frame type is a two byte number appended immediately after the 0x7E opening flag. (meaning TBD)
- A two byte CRC is appended after the information field. CRC is calculated over frame type and information fields only, before byte stuffing.
 CRC-16 CCITT polynomial is used x¹⁶ + x¹² + x⁵ + 1
- Empty frames do not include any CRC or frame type, just two 0x7E markers.
- DATA and CRC fields are stuffed by the following rules
 7E hex => 7D 5E hex
 - 7D hex => 7D 5D hex
- Maximum HDLC frame size is 1024 Bytes

Digital Test Points

Test	Definition
Point	
J4/A15	TCP stream1 connection
J4/A16	TCP stream1 received data valid
J4/A17	TCP stream1 flow control
J4/A18	HDLC decoder output data valid
J4/A19	HDLC decoder output flow control
J4/A20	Toggle when bad received HDLC frame
J4/A21	Output word valid (CLK_P clock domain)
J4/A22	Output word valid (CLK_S clock domain),
	should be always '1' unless there is an
	underflow condition (not enough data sent
	over TCP connection)
J4/A23	

Options

Several interface types are supported through multiple firmware options. All firmware versions can also be downloaded from http://www.comblock.com/download.html

Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 18 seconds

Option	Definition
- A	Differential LVDS output
-В	Single-ended LVTTL output

Load Software Updates

From time to time, ComBlock software updates are released.

To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

ComBlock Control Center							
File Operations Functions Help							
* * 📽 🎲 🕕 🗠 💷 🚇							
COM5003 TCP-IP / USB GATEWAY							
-COM800	E-COM800 сом5003 TCP-IP / USB GATEWAY						
-сом1: -сом -со	-Personalit Index 1 2 3 4 5 6 7	Personality 1400 5003 0003 0003 0000 0000 0000 0000 0	Option B B B B B B B B	Default D	Authorized Yes Yes Yes Yes Yes Yes Yes	Boot Protection Yes No No No No No	Address 0 262144 524288 0 0 0 0
	Add/Remo	ve/Modify Per Personality 5003	Option B	Password Clo	Set Def	ault Add	/Modify

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware

upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in J3 and during power-up. This prevents the FPGA configuration and restore USB communication [LAN communication is restored only if the IP address is known/defined for the personality index selected as default]. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

UDP Reset

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset the modem (and therefore the TCP-IP connection) gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a client 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-1849 is at a remote location.

The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-1849.

TCP-IP connections can also be cleared remotely from the ComBlock Control Center as illustrated below:

le	Operations Functions	Help
5	Communication Setup	Ctrl+S
%	Detect ComBlocks	Ctrl+D
-	Settings	Ctrl+E
	Personalities	Ctrl+M
	Status Registers	Ctrl+R
	TCP Reset TCP/IP Co	nnection.
R	TCP Reset TCP/IP Connect	ion
R	TCP[Reset TCP/IP Connect	comBlock that you would like to reset: 172 16 1, 130

VHDL code

The FPGA code is written in VHDL. It does not use any IP core or third-party software.

It occupies the following FPGA resources:

Resource	Utilization	Available	Utilization
LUT	7014	63400	11.06
LUTRAM	3	19000	0.02
FF	5972	126800	4.71
BRAM	10	135	7.41
Ю	98	285	34.39
BUFG	9	32	28.13
MMCM	2	6	33.33
PLL	1	6	16.67

Operating input voltage range

Supply voltage	+4.5V min, +12V max		
	650mA typ.		

Absolute Maximum Ratings

Supply voltage	-0.5V min, +20V max
98-pin connector inputs	-0.5V min, +3.6V max

Important:

The I/O signals connected directly to the FPGA are NOT 5V tolerant!

Mechanical Interface

Schematics

The board schematics are available on-line at http://comblock.com/download/com 1800schematics.pdf

Pinout

USB

The USB port is equipped with mini type AB connectors. (G = GND). The COM-1849 acts as a USB device.

Right Connector J8

Тор	A1 B1	Bottom
CLK_S_N CLK_S_P DATA_OUT_0N DATA_OUT_0P DATA_OUT_1N DATA_OUT_1P DATA_OUT_2P DATA_OUT_2P DATA_OUT_3N DATA_OUT_3P DATA_OUT_4N		DATA_OUT_16N DATA_OUT_16P DATA_OUT_17N DATA_OUT_17P GND DATA_OUT_18N DATA_OUT_18P DATA_OUT_19N DATA_OUT_19P DATA_OUT_19P DATA_OUT_20N DATA_OUT_20P
DATA_OUT_4P DATA_OUT_5N DATA_OUT_5N DATA_OUT_6P DATA_OUT_6P DATA_OUT_7N DATA_OUT_7N DATA_OUT_8N DATA_OUT_8N DATA_OUT_9P DATA_OUT_10N DATA_OUT_10N DATA_OUT_10N DATA_OUT_11N DATA_OUT_11P DATA_OUT_12P DATA_OUT_12P DATA_OUT_12P DATA_OUT_12P DATA_OUT_13N DATA_OUT_13N DATA_OUT_15N DATA_OUT_15N DATA_OUT_15P		DATA_OUT_21N DATA_OUT_21P DATA_OUT_22N DATA_OUT_22P DATA_OUT_23N DATA_OUT_23P DATA_OUT_24N DATA_OUT_24P GND DATA_OUT_25P DATA_OUT_25P DATA_OUT_25P DATA_OUT_26N DATA_OUT_27P DATA_OUT_27P DATA_OUT_27P DATA_OUT_28P DATA_OUT_28P DATA_OUT_29N DATA_OUT_29N DATA_OUT_29N DATA_OUT_30N DATA_OUT_30P DATA_OUT_31P OATA_OUT_31P
M&C_TX	A49 B49	M&C_RX

LVDS output samples (-A firmware option)

Right Connector J8

LVTTL output samples (-B firmware option)

Configuration Management

This specification is to be used in conjunction with VHDL software revision 1 and ComBlock control center revision 3.13g and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1849 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1849.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

ComBlock Ordering Information

COM-1849 TCP stream to 32/64 parallel digital outputs converter

ECCN: EAR99

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 E-mail: sales@comblock.com