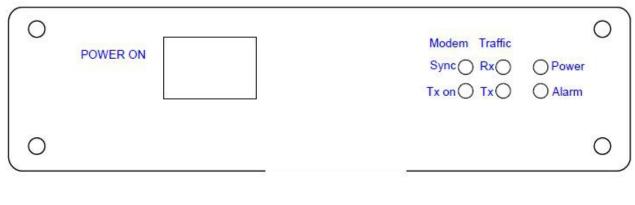


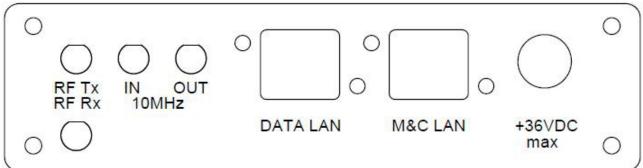
COM-1931 L/S-band burst spread-spectrum transceiver

Key Features

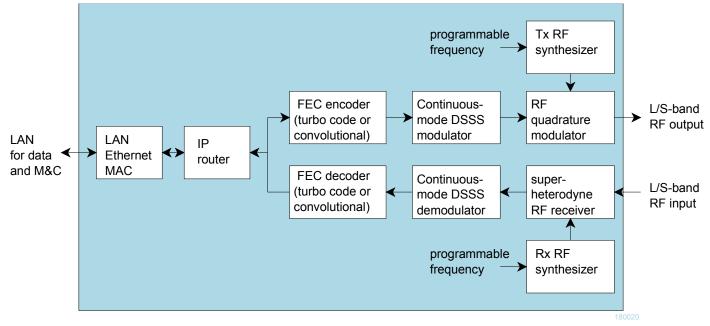
- L/S-band modem to send and receive short UDP frames over wireless, satellite or cable. (for continuous-mode see <u>COM-1918</u>)
- Direct-Sequence Spread-Spectrum (DSSS) modulation
- Nominal frequency of operation: 950 2175 MHz for direct connection to external LNB or BUC. Customization to other frequency bands is possible.
- Burst mode operation:
 - fixed-length 512-bit data frames from/to LAN/UDP ports
 - Multiple frames transmitted efficiently with only 32-symbol separation.
- Acquisition: 1600-symbol preamble with no apriori knowledge of arrival time
- Large frequency acquisition range: ±(chip_rate / 64) or (1.8*symbol_rate), whichever is smaller, with no apriori knowedge.
- End-to-end latency: 2672 symbol / modulation symbol rate. For example 1.2ms at 2.5Msymbols/s.
- Programmable chip rate, up to 40 Mchips/s
- 2047-chip Gold codes
- Data rate: practical range from chip_rate/2047 to chip_rate/30
- Supply voltage: 18¹ 36VDC with reverse voltage and surge protection.
- Frequency reference: internal TCXO or input for an external, higher-stability 10 MHz frequency reference.

- Built-in tools: PRBS-11 pseudo-random test sequence, BER tester, AWGN generator, internal loopback mode.
- Monitoring:
 - Carrier frequency error
 - o SNR
 - o BER
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.




For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1931.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u> .


MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2018 Issued 6/11/2020

¹ 5.6V min when not supplying external LNB power

Functional Block Diagram

Configuration (Basic)

The easiest way to configure the COM-1931 is to use the **ComBlock Control Center** software supplied with the module on CD. Please follow the few simple steps described in the user manual "<u>ccchelp.pdf</u>" document to install the ComBlock Control Center software "ComBlock_Control_Center_windows_rev.exe"

Connect the LAN cable between PC and transceiver RJ45 connector labeled "M&C LAN". Turn the transceiver power supply on and wait approximately 5-10 seconds. In the **ComBlock Control Center** window, click on the left-most button and select LAN as primary communication media. The default IP address is 172.16.1.128.

In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the \checkmark *Detect* button, next click to highlight the COM-1931 module to be configured, next click the 🖆 Settings button to display the *Settings* window shown below.

1931A S-band burst spread-spectr	rum transceiver
COM1931 S-band burst spread-spectrum transceiver Ba	sic Settings
RF frequencies Transmit Receive Network	
Transmitter Frequency index: 0 [0-7]	RF frequency: 925000000 Hz
Tx ALC target level: 2000 0-4095	V Transmitter on
Receiver	
Frequency index: 1 [0-7]	RF frequency: 2175000000 Hz
Initial LNA gain: 1023 0-1023	Initial RF gain: 0 0-4095
Initial IF gain: 0 0-4095	RF AGC: AGC on 👻
IF AGC: AGC on	LNB supply: +18VDC 👻
General	
Frequency 0 925000000	Frequency 1 2175000000
Frequency 2 100000000	Frequency 3 120000000
Frequency 4 1500000000	Frequency 5 180000000
Frequency 6 200000000	Frequency 7 0

COM1931 S-band burst spread-spectrum transceiver Basi	c Settings
RF frequencies Transmit Receive Network	
Chip rate: 5000000 Chips/s	I-code: 2225 Octal
I-channel symbol rate: 128000 Symbols/s	Tx center frequency offset: 0 Hz
Input Selection: LAN/UDP port 1024	
Spectrum inversion	FEC encoding
Signal amplitude: 30000 range 0-65536	Noise amplitude: 0 range 0-65536
	Tx frame counter: 0
Restore Default Apply	Ok Advan Cancel
	- C - William - X
COM1931 S-band burst spread-spectrum transceiver Basi	c Settings
RF frequencies Transmit Receive Network	
	c Settings I-code: 2225 Octal Rx center frequency offset: 0 Hz
RF frequencies Transmit Receive Network Chip rate: 5000000 Chips/s	I-code: 2225 Octal
RF frequencies Transmit Receive Network Chip rate: 5000000 Chips/s I-channel symbol rate: 128000 Symbols/s	I-code: 2225 Octal Rx center frequency offset: 0 Hz
RF frequencies Transmit Receive Network Chip rate: 5000000 Chips/s I-channel symbol rate: 128000 Symbols/s AGC response time: 6 0 - 14	I-code: 2225 Octal Rx center frequency offset: 0 Hz

Restore Default

Apply

Ok

Advan...

Cancel

COM1931 S-band burst spread-spectrum transceiver Basic Settings	×
RF frequencies Transmit Receive Network	
Static IP address: 172 16 1 128	Subnet mask: 255 255 255 0
Gateway address: 172 16 1 3	
Destination IP address: 172 16 1 68	destination port: 1024
MAC address: 00:00:00:00:00	
Restore Default Apply Ok	Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center "Advanced" configuration or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write. Definitions for the <u>Control registers</u> and <u>Status registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). The stored configuration is automatically loaded up at power up. All control registers are read/write.

Note: several multi-byte fields like the IP addresses are enacted upon (re-)writing to the last control register (REG141)

Several key parameters are computed on the basis of the 160 MHz ADC clock \mathbf{f}_{clk_adc} or the 120 MHz internal processing clock \mathbf{f}_{clk_p} .

RF	Configuration
Stored frequency	Preselected transmitter or receiver frequency f_0 . (one of eight stored frequencies)
f ₀	Valid range 925 MHz – 2.175 GHz, expressed in Hz.
	REG0: bit 7:0 (LSB)
	REG1: bit 15:8
	REG2: bit 23:16
	REG3: bit 31:24 (MSB)
Receiver frequency selection	Use to switch the receiver center frequency among preselected values.
1 J	Range 0 through 7
	REG6(2:0)
Transmitter frequency	Use to switch the transmitter center frequency among preselected values.
selection	Range 0 through 7
	The rx/tx frequencies change is enacted upon writing to REG6.
	REG6(6:4)
Stored frequency	Seven additional preselected frequencies
$\mathbf{f}_{\mathbf{x}}$	x = 1 through 7
-x	Same format as f_0
	REG($3+4*x$): bits 7:0 (LSB)
	REG(4+4*x): bits 15:8
	REG(5+4*x): bits 23:16
	REG(6+4*x): bits 31:24 (MSB)
Receiver RF Gain	Initial RF gain (before the RF AGC takes over). 12-bit.
Receiver Ri Gain	0 for the minimum gain, 4095 for the maximum gain.
	The receiver RF gain change is enacted upon writing to REG5.
	REG4: bits 7:0 (LSB)
	REG5(3:0): bits 11:8
Receiver IF Gain	Initial IF gain (before the IF AGC takes over). 12-bit.
Receiver if Gain	0 for the minimum gain, 4095 for the maximum gain.
	The receiver IF gain change is enacted upon writing to REG36.
	REG35: bits 7:0 (LSB)
Receiver LNA Gain	REG36(3:0): bits 11:8
Receiver LINA Gain	LNA gain 10-bit.
	0 for the minimum gain, 1023 for the maximum gain.
	The receiver IF gain change is enacted upon writing to REG41.
	REG40: bits 7:0 (LSB)
Transmitter ALC target	REG41(3:0): bits 11:8
I ransmitter ALC target	The transmit gain is automatically adjusted so that the measured tx power equals this field.
	The transmitter gain change is enacted upon writing to REG38.
	REG37: bits 7:0 (LSB)
Deseiver LNA ACC 1	REG38(3:0): bits 11:8
Receiver LNA AGC loop	0 = open loop. LNA path gain is fixed by control registers.
	1 = AGC on. Gain is adjusted on the basis of the RSSI measurement.
	REG39(0)
Receiver RF AGC loop	0 = open loop. RF path gain is fixed by control registers.
	1 = AGC on. Out-of-range conditions are detected at the RF mixer and IF power detector.

	REG39(1)
Receiver IFAGC loop	0 = open loop. IF1 path gain is fixed by control registers.
	1 = AGC on. Out-of-range conditions are detected at the IF power detector.
	REG39(3:2)
Transmitter ON	0 = off
	1 = on REG39(6)
LNB supply	The transceiver is capable of supplying up to 500mA at 13VDC or 18VDC to an external LNB.
	This supply voltage is multiplexed with the RF input signal onto the "RF Rx" input.
	0 = LNB supply off
	1 = LNB supply on Warning: Enabling the LNB supply may cause damage to test equipment unless a
	DC block is used.
	REG43(0)
LNB supply 13V vs 18V	0 = 13 VDC LNB supply
	1 = 18VDC LNB supply
	REG43(1)
General Parameters	Configuration
Internal/External frequency reference	10 MHz output generated from 10 MHz input (-B firmware option) or 19.2 MHz TCXO (-A firmware option)
	REG46(1): enable(1)/disable(0) CLKREF_OUT (special connector on front-panel)
	REG46(2): enable(1)/disable(0) CLK_LNB (multiplexed with received signal)
	REG46(3): enable(1)/disable(0) CLK_TX (multiplexed modulated transmit signal + 10 MHz)
FEC encoding	K=9 rate ½ convolutional code with zero tail bits or DVB-RCS2 Turbo code rate ½, depending
	on the firmware option loaded into the FPGA.
	0 = bypassed
	1 = FEC encoding enabled
	REG47(0)
FEC decoding	0 = bypassed
	1 = FEC decoding enabled
	REG47(1)
Modulator	Configuration
Processing clock	Modulator processing clock. Also serves as DAC sampling clock.
f _{clk_tx}	Expressed as as
	$\mathbf{f}_{\text{clk}_{\text{tx}}} = \mathbf{f}_{\text{clk}_{\text{p}}} * M / (D * O))$ where
	D is an integer divider in the range 1 - 106
	M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3
	O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3
	Note: the graphical use interface computes the best values for M, D and O.
	$\mathbf{f}_{\text{clk}_{\text{tx}}}$ recommended range 80-160 MHz.
	REG48(6:0) = D
	REG49 = M(7:0)
	REG50(1:0) = M(9:8)
	REG51 = O(7:0)
	REG52(2:0) = O(10:8)
Chip rate	The modulator chip rate is in the form $\mathbf{f}_{chip_rate_tx} = \mathbf{f}_{clk_tx} / 2^n$
f _{chip_rate_tx}	where n ranges from 1 (2 samples per chip) to 15 (chip rate = \mathbf{f}_{clk_tx} / 32768).
	n is defined in REG53(3:0)
I Code	Linear feedback shift register initialization.

	A
	As per [1] REG54 LSB
	REG55(2:0) MSb
Q Code	REG56 LSB
2	REG57(2:0) MSb
I channel symbol rate	The I-channel symbol rate can be set independently of the spreading code period as
f _{symbol_rate_i}	$\mathbf{f}_{symbol_rate} * 2^{32} / \mathbf{f}_{clk_tx}$
	REG65 (LSB) – REG62 (MSB) The Q-channel symbol rate can be set independently of the spreading code period as
Q channel symbol rate	The Q-channel symbol rate can be set independently of the spreading code period as $f_{\text{symbol rate}} * 2^{32} / f_{\text{clk tx}}$
fsymbol_rate_q	Isymbol_rate 2 / Iclk_tx
	REG69 (LSB) – REG66 (MSB)
Output center frequency	The modulated signal center frequency can be shifted in frequency
$(\mathbf{f_c})$	
	32-bit signed integer (2's complement representation) expressed as
	$\mathbf{f_c} * 2^{32} / \mathbf{f_{clk_tx}}$
	REG73 (LSB) – REG70 (MSB)
Sinusoidal frequency	In addition to the fixed frequency offset above, a sinusoidal frequency offset can be generated to
offset	mimic Doppler rate in highly mobile applications.
	This offset is characterized by two parameters: amplitude and period.
	The amplitude (a frequency) is expressed as $f_{c \text{ amplitude}} * 2^{32} / f_{clk tx}$
	in the following control registers:
	REG74(LSB) – REG77 (MSB)
	The period is expressed as
	$2^{32}/(\mathbf{f}_{clk}\mathbf{t}\mathbf{x} * \mathbf{T})$
	in the following control registers: REG78(LSB) – REG81 (MSB)
Digital Signal gain	
Digital Signal gain	16-bit amplitude scaling factor for the modulated signal. The maximum level should be adjusted to prevent saturation. The settings may vary slightly
	with the selected chip rate. Please check for saturation (see test points) when changing either the
	chip rate or the signal gain.
	REG82 = LSB
	REG83 = MSB
Additive White Gaussian	16-bit amplitude scaling factor for additive white Gaussian noise.
Noise gain	Because of the potential for saturation, please check for saturation (see test points) when
	changing this parameter.
	REG84 = LSB
	REG85 = MSB
Input selection	0 = from UDP port 1024
	1 = internal pseudo-random test sequence. 100ms repetition
	2 = internal pseudo-random test sequence continuous transmission
	3 = unmodulated test mode (carrier only)
	REG86(1:0)
Spectrum inversion	Invert Q bit
-	0 = off
	1 = on
	REG86(3)

BPSK / SQPN	0 = BPSK 1 = SQPN REG86(4) Future feature. BPSK baseline
TX_ENB control	The TX_ENB signal at the interface controls the RF transmit circuit. During normal operations, the transmitter and ancillary circuits (RF LO) are muted outside of a transmit burst. REG86(5) = 0
	However, during tests, the transmitter can be forced to stay ON at all times, for example when the AWGN is generated within. REG86(5) = 1

Demodulator	
Parameters	Configuration
Tx-Rx loopback	REG121(7): enable (1) or disable(0) loopback test mode
Nominal chip rate	32-bit integer expressed as
f _{chip_rate_rx}	$f_{chip rate rx} * 2^{32} / f_{clk adc}$
	The maximum practical chip rate is \mathbf{f}_{clk_adc} /2.
	The maximum allowed error between transmitted and received chip rate is +/- 100ppm.
I Code	REG91 (LSB) – REG94(MSB) Linear feedback shift register A initialization.
I Code	REG97 LSB
	REG98(2:0) MSb
Q Code	Linear feedback shift register C
QCoue	REG99 LSB
	REG100(2:0) MSb
Nominal I channel	Nominal I-channel symbol rate, defined as
symbol rate	$\mathbf{f}_{\text{symbol rate i}} * 2^{32} / \mathbf{f}_{\text{clk adc}}$
fsymbol_rate_i	
	REG103 (LSB) – REG106 (MSB)
Nominal Q channel	Nominal Q-channel symbol rate, defined as
symbol rate	$\mathbf{f}_{symbol_rate_q} * 2^{32} / \mathbf{f}_{clk_adc}$
f _{symbol_rate_q}	
	REG107 (LSB) – REG110 (MSB)
I channel spreading	Approximate (i.e rounded) ratio of chip rate / symbol rate
factor	Range: 3 – 2047
(Processing gain)	Note: to effectively achieve this processing gain, the code period must be longer than one symbol duration.
	REG111 (LSB)
	REG112(4:0) MSb
Q channel spreading	Approximate (i.e rounded) ratio of chip rate / symbol rate
factor	REG113 (LSB)
(Processing gain)	REG114(4:0) MSb
Nominal input center	The nominal center frequency is a fixed frequency offset applied to the input samples. It is used for
frequency (f _c)	fine frequency corrections, for example to correct clock drifts.
	32-bit signed integer (2's complement representation) expressed as
	$\mathbf{f_c} * 2^{32} / \mathbf{f_{clk_adc}}$
	In addition to this Constant to an entire all times done done for many one Classes have been to be set on a figure to
	In addition to this fixed value, an optional time-dependent frequency profile can be entered (future). REG115 (LSB) – REG118 (MSB)
Spectrum inversion	Invert Q bit
^ 	0 = off
	1 = on
	REG119(0)

BPSK / SQPN	0 = BPSK 1 = SQPN Future feature. BPSK baseline. REG119(1)
AGC response time	Users can to optimize AGC response time while avoiding instabilities (depends on external factors such as gain signal filtering at the RF front-end and chip rate). The AGC_DAC gain control signal is updated as follows 0 = every chip, 1 = every 2 input chips, 2 = every 4 input chips, 3 = every 8 input chips, etc 10 = every 1000 input chips. Valid range 0 to 14. REG121(4:0)

Network Interfa	Network Interface	
Parameters	Configuration	
LAN MAC address LSB	REG123. To ensure uniqueness of MAC address. The MAC address most significant bytes are tied to the FPGA DNA ID. However, since Xilinx cannot guarantee the DNA ID uniqueness, this register can be set at the time of manufacturing to ensure uniqueness.	
Static IP address	4-byte IPv4 address. Example : 0x AC 10 01 80 designates address 172.16.1.128 (default IP address) REG132 (MSB) – REG135(LSB)	
Subnet mask	REG128 (MSB) – REG131(LSB)	
Gateway IP address	REG124 (MSB) – REG127(LSB)	
Destination IP	4-byte IPv4 address	
address	Destination IP address for UDP frames with decoded data.	
	REG136 (MSB) – REG139(LSB)	
Destination ports	I-channel data is routed to this user-defined port number:	
	REG140(LSB) – REG141(MSB)	

Note: several multi-byte fields like the IP addresses are enacted upon (re-)writing to the last control register (REG141)

Monitoring

Status Registers

Parameters	Monitoring
Hardware self-check	At power-up, the hardware platform performs a quick self check. The result is stored in status
	registers SREG0-4, SREG16-18
	Properly operating hardware will result in the following sequence being displayed:
	SREG0-SREG4 = 01 F1 1D xx 7F, where xx (bad NAND flash sectors) must be less than 10
	$SREG16-18 = 0x22\ 00\ 87$
Power supply check	SREG4(0): PGOOD1 RF1_+3.1V
	SREG4(1): PGOOD2 IF1+_3.1V
	SREG4(2): PGOOD3 A_+4.75V
	SREG4(3): PGOOD4 MOD_+4.8V
	SREG4(4): PGOOD5 TX_SYNTH_+3.3V
	SREG4(5): PGOOD6 RX_+4.75V
	SREG4(6): PGOOD7 RX_SYNTH_+3.3V
	Overall valid response: 0x7F
RSSI	Received signal strength indicator. 12-bit number
	Practical range –70 to -5 dBm after LNA
	See RF_POWER_DET1 in schematic.
	SREG5 = LSB

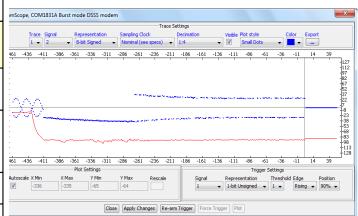
	SREG6(3:0) = MSB
Received power at RF	Power detection at RF mixer. Target is 0xEC0 while the RF AGC is tracking
mixer	See RF POWER DET2 in schematic.
	SREG7 = LSB
	SREG8(3:0) = MSB
Received power at IF	Power detection at IF after bandpass filter and IF gain control. Target is 0xE80 while the IF AGC
	is tracking.
	See IF1_POWER_DET in schematic.
	SREG9 = LSB
	SREG10(3:0) = MSB
Transmit power	Power detection at the RF transmit output.
···· · · · · ·	See TX POWER DET in schematic.
	SREG11 = LSB
	SREG12(3:0) = MSB
FPGA clocks	PLL lock status
	SREG17(0) = 10 MHz clock PLL locked
	SREG17(1) = 160 MHz ADC sampling clock PLL locked
	SREG17(2) = 120 MHz processing clock PLL locked
	SREG17(3) = DAC sampling clock PLL locked
	SKEOT ((5) DAE sampling clock The locked
RF synthesizers locked	'1' when locked
	SREG19(0): rx synthesizer locked
	SREG19(1): tx synthesizer locked
FEC codec type	$0 = \text{convolutional K} = 9 \text{ rate } \frac{1}{2}$
51	$1 = DVB-RCS2$ turbo code, rate $\frac{1}{2}$
	SREG19(7 downto 4)
DSSS demodulator mor	
FEC decoder input BER	The burst-mode convolutional FEC decoder computes the input BER prior to error-correction
measurement	decoding. Measured in a frame. This method works with any bit sequence but requires enabling
	the Viterbi codec.
	SREG20 (LSB) - SREG22 (MSB)
BER tester synchronized	SREG23(0): 1 when the BERT is synchronized with the received PRBS-11 test sequence.
Bit error rate	Monitors the BER (number of bit errors over 80,000 received bits) when the modulator is sending
	a PRBS-11 test sequence. This measurement is valid only when the BER tester is synchronized
	(see above).
	SREG24 (LSB) - 27 (MSB)
Number of transmitted	SREG28 (LSB) - 30 (MSB)
frames	
Number of received	SREG31 (LSB) – 33 (MSB)
frames	
Number of parallel code	The number of parallel code acquisition circuits is expressed as
acquisition circuits	NACQ = NACQ_DIV * NMUX
	SREG34: NACQ_DIV
	SREG35: NMUX
Non-coherent integration	SREG36
and dump period N_NCID	
Measured modulated	SREG37(LSB)
signal power	SREG38
	SREG39(MSB)
Measured AWGN	Approximation: noise power is uniform over a range of $+/- f_{clk_tx} /2$
power	Therefore, the noise density depends on the selected modulator chip rate (see f_{clk_tx} equation
	above)
	SREG40(LSB)
	SREG41
	SREG42(MSB)
Carrier frequency	Residual frequency offset with respect to the nominal carrier frequency (i.e. after frequency
Carrier frequency offset1	

	former * 734 / f
	fcerror * 2^{32} / \mathbf{f}_{elk_p}
	SREG43 (LSB) – SREG46 (MSB)
Carrier frequency	Residual frequency offset with respect to the nominal carrier frequency (i.e. after frequency
offset2	profile correction). Part 2/2.
	32-bit signed integer expressed as
	fcerror * 2^{31} / f_{chip_rate}
	SREG47 (LSB) – SREG50 (MSB)
SNR	2*(S+N)/N ratio,
	valid only during code lock.
	Linear (not in dBs)
	Fixed point format 14.2
	SREG51 (LSB) – SREG52 (MSB)
CIC_R	Receiver decimation factor from \mathbf{f}_{clk_ade} to 4* $\mathbf{f}_{chip_rate_rx}$.
	Valid range 1 - 16384
	SREG53 (LSB) – SREG54 (MSB)
Network Monitoring	
Parameters	Monitoring
LAN PHY ID	Expect 0x22 when LAN adapter is plugged in.
	SREG16
MAC address	Unique 48-bit hardware address (802.3). In the form SREG55:SREG56:SREG57::SREG60

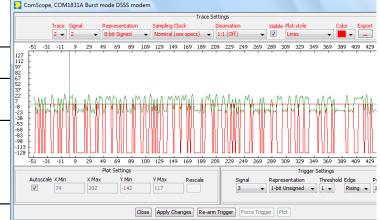
Multi-byte status variables are latched upon (re-)reading SREG16.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the kiele button to start, then select the signal traces and trigger are defined as follows:


				Signais sampling
Trace 1 signals	Format	Nominal	Buffer	software control b
		sampling	length	and/or selecting th
		rate	(samples)	
1: I-channel spread	8-bit	ADC clock	512	jumping clock.
nput, directly from	signed	f _{clk adc}	012	
ADC (could be at	Signed	■clk_adc		In particular, selec
IF)				real-time sampling
2: Demodulated I-	8-bit	1 sample /	512	same time-scale for
channel	signed	I-symbol	012	
3: FFT magnitude	8-bit	ADC clock	512	The ComScope us
5. III I magintude			512	
A. Comion tro aloin a	unsigned	f _{clk_adc}	510	www.comblock.co
4: Carrier tracking	8-bit	ADC clock	512	
phase	signed	f _{clk_adc}		mScope, COM1831A Burst mode DSSS modem
Trace 2 signals	Format	Nominal	Buffer	Trace Signal Representation Sampling
		sampling	length	1 V 2 Bebit Signed V Nominal
		rate	(samples)	161 -436 -411 -386 -361 -336 -311 -286 -2
1: I-channel spread	8-bit	ADC clock	512	
input at near-zero	signed	f _{clk} adc		
center frequency	8	-cik_auc		
2: Code replica.	8-bit	2	512	
Compare with	signed	samples/chip		
spread input	U	1 1		
signals				461 -436 -411 -386 -361 -336 -311 -286 -24
3: last demod AGC	8-bit	1 sample /	512	Plot Settings Autoscale X Min X Max Y Min Y Max
gain (I-channel)	unsigned	symbol	512	-336 -335 -65 -64
			512	Close Apply C
4: Symbol tracking phase (accumulated)	8-bit	1 sample /		
	signed	symbol		ComScope example, show
Trace 3 signals	Format	Nominal		<mark>de</mark> modulated I-bits during
		sampling	length	<mark>ha</mark> lf). Trace2 signal 4 (in
		rate	(samples)	plase.
	8-bit	rate 2 samples /	(samples) 512	phase.
1: I-channel after FFT frequency		2 samples /	(samples)	blase.
FFT frequency correction,	8-bit signed		(samples)	ComScope, COM1831A Burst mode DSSS modem
FFT frequency correction, resampling and		2 samples /	(samples)	ComScope, COM1831A Burst mode DSSS modem
FFT frequency correction, resampling and channel LPF	signed	2 samples / chip	(samples)	ComScope, COM1831A Burst mode DSSS modem
FFT frequency correction, resampling and		2 samples /	(samples)	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Sa 2 2 Bebt Signed N -51 -31 -11 9 29 49 69 89 109 1 127 - - - 9 29 49 69 89 109 1
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel	signed	2 samples / chip	(samples)	ComScope, COM1831A Burst mode DSSS modem
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel	signed 8-bit	2 samples / chip 1 sample / Q-symbol	(samples)	Trace Signal Representation Sa 2 • 2 • 0 0-bit Signal N N -51 -51 -51 -51 -11 9 29 49 69 89 109 1 N 127 -12 -11 9 29 49 69 89 109 1 19 1 127 -12 -11 9 29 49 69 89 109 1 19 1 127 -11 9 29 49 69 89 109 1 19 1 19 29 49 69 89 109 1 127 -11 9 29 49 69 89 109 1 19 1 19 29 49 69 89 109 1 127 -11 9 29 49 69 89 109 1 19 1 19 1 127 -11 9 29 49 69 89 109 1 19 1 19 1 127 -11 9 29 49 69 89 109 1 19 1 19 1 127 -11 10 10 10 10 10 10 10 10 10 10 10 10 1
FFT frequency correction, resampling and channel LPF 2: Demodulated	signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples /	(samples) 512 512	ComScope, COM1831A Burst mode DSSS modem
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated)	signed 8-bit signed 8-bit signed	2 samples / chip 1 sample / Q-symbol	(samples) 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Sa 2 + 2 + 8-bit Signed + N -51 -31 -11 9 29 49 69 89 109 1 127 127 127 127 127 127 127 12
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after	signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples /	(samples) 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation 2 + 2 + 8-bit Signed + N 2 + 2 + 8-bit Signed - N 2 + 2 + 9 49 69 89 109 1 127 72 72 72 72 72 72
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid	signed 8-bit signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples / symbol	(samples) 512 512 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Sa 2 + 2 + 6+bt Signed N N -51 -31 -11 9 29 49 69 89 109 1 -51 -51 -51 -51 -51 -51 -51 -51 -51 -51
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is	signed 8-bit signed 8-bit signed	2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol	(samples) 512 512 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Ss 2 - 2
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked.	signed 8-bit signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol	(samples) 512 512 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Set 2 2 2 8 8-bit Signed N N -51 -31 -11 9 29 49 69 89 109 1 127 7 82 6 53 7 53 7 53 7 53 7 53 7 54 7 55 7 57 7 57 7 57 7 57 7 57 7 57 7 57 7 57 7 57 7 58 7 59 109 1 10 10 10 10 10
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is	signed 8-bit signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol	(samples) 512 512 512 512	ComScope, COMIB31A Burst mode DSSS modem Trace Signal Representation Sa 2 2 2 0 69-bit Signed N N -51 -31 -11 9 29 49 69 89 109 1 -51 -31 -11 9 29 49 69 89 109 1 -51 -31 -11 9 29 49 69 89 109 1 -51 -31 -11 9 29 49 69 89 109 1
FFT frequency correction, resampling and channel LPF 2: Demodulated Q-channel 3: Code tracking phase correction (accumulated) 4: 2(S+N)/N after despreading. Valid only if code is locked.	signed 8-bit signed 8-bit signed 8-bit	2 samples / chip 1 sample / Q-symbol 2 samples / symbol Symbol	(samples) 512 512 512 512	ComScope, COM1831A Burst mode DSSS modem Trace Signal Representation Sa 2 2 2 0 0 0 0 0 0 0 0 0 0 -51 -31 -11 9 29 49 69 89 109 1 127 67 57 57 57 57 57 57 57 57 57 5

1: End of	Binary
demodulated burst	
2: Missed burst	Binary
detection (at end	
of expected burst)	
3. Demod sync	Binary
word detection	


Signals sampling rates can be changed under by adjusting the decimation factor he $f_{clk adc}$ demod clock as real-time

ecting the f_{clk_adc} demod clock as ng clock allows one to have the for all signals.

ser manual is available at com/download/comscope.pdf.

wing trace1 signal2 (in blue): ng preamble (left) then data (right in red) shows the I-symbol tracking

ComScope example, showing code lock with aligned: received spread signal after RRC filter (green) vs code replica (red)

LEDs

LED	Definition				
Power	Green when power is applied				
Alarm	Red when one of these conditions occur:				
(red)	• Tx RF frequency synthesizer is out of lock				
	• Rx RF frequency synthesizer is out of lock				
Tx	Blink green when a frame from LAN/UDP is				
	being transmitted				
Rx	Blink green when a received frame is forwarded				
	to the LAN/UDP				
Sync	Yellow when BER tester synchronized (while in				
	test mode. Transmitter must send PRBS11 test				
	sequence)				
Tx on	Yellow when BER tester byte error (valid only				
	if BER tester is synchronized)				

Digital Test Points

The test points are only accessible after opening the enclosure. They are intended to be used only for debugging purposes.

Test Point	Definition
TP1	Tx RF frequency synthesizer lock status
PLL_LOCK	('1' when locked)
TP2 DONE	FPGA configured ('1' when successfully
	configured)
TP3	Rx RF frequency synthesizer lock status
PLL_LOCK	('1' when locked)
TP4 RSSI	Received signal strength indicator.
	Practical range –70 to -5 dBm after LNA
J4.1	Transmit frame boundaries $(0 = idle)$
J4.2	Modulator saturation
J4.3	Demod code lock
J4.4	Demod signal presence detected at FFT
J4.5	Demodulator recovered carrier/center
	frequency (coarse)
J4.6	Demod data field(s) [demod state = 3]
J4.7	Demod sync word detection
J4.8	Missed burst detection
J4.9	FEC decoder input bit error
J4.10	BER tester synchronized
J4.11	BER tester matched filter output (detects
	start of PRBS11 sequence)
J4.12	Byte error detected by BER tester

Operation

Power supply

This unit is designed for a +28V DC (18 - 36V) power supply. Power consumption depends somewhat on the configuration. Maximum power consumption: 350mA under 28V. Power supply is through the front-panel connector.

A lower supply voltage, down to 5.6V, can be used when the LNB supply output is unused.

Frequency reference

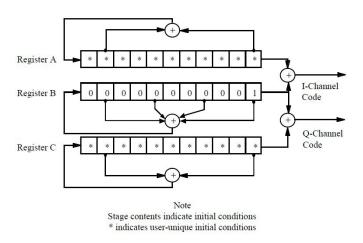
Depending on the firmware version loaded, the frequency reference is an external 10 MHz signal supplied through the front panel (-**B** firmware option) or an internal 19.2 MHz VC-TCXO (-**A** firmware option).

Both -A and -B firmware options are pre-loaded and can be switched easily.

Warning: when selected as external frequency reference, the 10 MHz frequency reference must be present prior to powering on the modem.

Click on the button below to switch between installed firmware options:

Output 10 MHz frequency reference


A 10 MHz frequency reference signal can be multiplexed with RF signals on the RF input (to an external LNB) and RF output (to an external BUC). The same 10 MHz is also available as an output on the front panel, labeled "10 MHz OUT". Each one of these three clocks signals can be enabled or disabled by software command.

Spreading codes

Each burst undergoes spectrum spreading with userselected pseudo-random codes. All fields (preambles, sync word, data) are spread.

Spreading codes are user-selected among a group of 2047-period Gold codes, irrespective of the symbol

rate. The codes are selected by their 11-bit A and C registers initialization.

Burst format

The modulator input consists of a 512-bit fixedlength payload data frame received over LAN/UDP.

The payload data frame is encoded with a convolutional code K=9, rate $\frac{1}{2}$, resulting in an encoded frame of length 1040 bits (including the 16 tail bits).

When transmitting a single frame, the frame is encapsulated in a spread-spectrum burst comprising four distinct fields:

- no data preamble
- toggling bits preamble
- 32-bit synchronization field
- 1040-bit encoded payload field

		512-bit data from UDP port
		1040-bit FEC encoded data
	010101 preamble	
000000 preamble	32-	-bit
	svr	10

When transmitting multiple frames, follow-on frames are appended without preamble, separated only with a 32-bit sync word.

Transmission timing

A data frame received over UDP is transmitted without delay. The transmission time uncertainty is small (< TBD us). The user application is therefore fully in control of the burst scheduling, for example to prevent collisions in a multi-node network. When the modulator is configured in PRBS11 test mode, the PRBS11 pseudo-random test sequence is generated internally, packetized in 512-bit frame and transmitted one frame every 100 ms. The UDP input is ignored while in this mode.

Input elastic buffer

When more than 512 bits of payload data is needed, multiple data frames can be queued for transmission in the elastic buffer. The modulator expects any follow-on frame to be entirely within the input elastic buffer before the previous frame transmission is complete (so as to avoid transmissing another long preamble). In this case, the modulator only inserts a 32-bit synchronization word between payload frames.

The input elastic buffer size is 8Kbit, large enough for 7 encoded frames.

Symbol rate

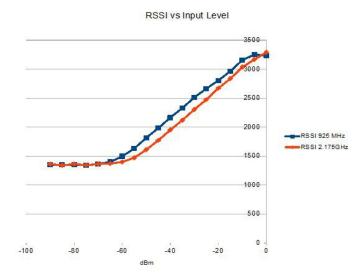
The symbol rate refers to the coded stream. The symbol rate can be set independently of the chip rate and code period. The demodulator includes an autonomous symbol tracking loop, separate from the code tracking loop.

Frequency acquisition & tracking

The frequency acquisition range depends on the chip rate and symbol rate, as defined by \pm (chip_rate / 64) or (1.8*symbol_rate), whichever is smaller, with no apriori knowedge.

Once locked, the carrier tracking loops tracks the carrier phase over a very wide frequency range.

Modulation


Baseline: BPSK spread with I-channel code.

Possible future extension: SQPN (I and Q channels spread with staggered I and Q code, Q-channel symbol rate = I-channel symbol rate / N, where N is an integer.

RSSI

The RSSI measurements (as reported in status registers SREG5/6) versus the receiver input level is plotted below for the two extreme operational

frequencies. The measurements are monotonous between -70 dBm and -5 dBm.

Note: RSSI measurement below –50Bm is affected by the presence of 10 MHz frequency reference when supplied to an external LNB (see control register REG46(2)).

Customization

The transceiver design can be customized to meet alternate customer requirements. The customizable features are

- Custom radio-frequency bands within 400 MHz- 3GHz at no extra charge.
- Trade-off preamble length versus acquisition threshold Eb/No. The baseline preamble is 1600 symbols for a threshold E_b/N_0 of 16 dB (PER > 99.9%). Lower threshold are achievable by increasing the integration time and thus the preamble length, down to E_b/N_0 of 5 dB for a preamble length of 32K symbols.

Customization has to be specified and quoted at the time of order.

Load Software Updates

From time to time, ComBlock software updates are released.

To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

C	OM1931	A S-band bur	st spread	-spectrun	n transceiver		×
F	Personalit	ies					
	Index	Personality	Option	Default	Authorized	Boot Protection	Address
	1	0013			Yes	No	0
	2	1931	Α	D	Yes	No	9830400
	3	1905			Yes	No	19660800
	4	1905			Yes	No	29491200
	Add / Remove / Modify Personality						
	Index	Personality	Option	Password	ł		
	2 🗸	1931	A		Set De	fault Ad	d/Modify
				Cl	ose		

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

ComBlock Control Center	
File Operations Functions Help	
* 🛰 🖀 🎻 🕕 🔤 🕮	
COM1931	iver
Select FPGA Configuration File Source for COM-1931	
-Select Source Internet download	
Operation of the first state of the sta	
Ok Cancel	

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

Two firmware options are available for this receiver:

-A firmware uses an internal VCTCXO frequency reference.

-B firmware option requires an external 10 MHz frequency reference.

Recovery

The toggle button under the backpanel can be used to

- (a) prevent the FPGA configuration at power up. This can be useful if a bad FPGA configuration was loaded which resulted in loss of communication with the user.
- (b) reset the LAN1 IP address to 172.16.1.128.

To prevent the FPGA configuration at power up, turn off power. Toggle the button. Turn on power, wait 1 second, then toggle the button a second time.

To reset the LAN1 IP address to a factory default of 172.16.1.128: Turn on power. Toggle the button, wait at least 30 seconds, during which time the red led blinks, then toggle the button a second time. Wait another 10 seconds, then cycle power off/on.

Interfaces

10/100/1000	RJ45
Ethernet LAN for data, monitoring	Supports auto MDIX to alleviate the need for crossover cable.
and control	the need for crossover cable.
10 MHz frequency	10 MHz frequency reference input
reference input	for frequency synthesis.
	Sinewave, clipped sinewave or
	squarewave.
	SMA female connector
	Input is AC coupled.
	Minimum level 0.6Vpp. Maximum level: 3.3Vpp.
10 MHz frequency	10 MHz frequency reference
reference output	output generated either from the 10
	MHz frequency reference input (-
	B firmware option) or from the
	internal TCXO (-A firmware
	option)
RF Rx	Receiver input.
	50 Ohm, SMA female connector.
	Operating range: -60 to -10 dBm Maximum no damage input level:
	+ 20 dBm
	20 0011
	Two other signals can be
	multiplexed onto the same coaxial
	connection between the COM-
	1931 transceiver and an external
	LNB:
	• 10 MHz frequency reference
	(software enabled) Level: -2 dBm typ.
	 13/18V supply (software
	enabled)
RF Tx	Transmitter output. 50 Ohm, SMA
	female connector.
	Transmit level: -30 to 0 dBm, user
	selectable.
	One other signal can be multiplexed onto the same coaxial
	connection between the COM-
	1931 transceiver and an external
	BUC:
	• 10 MHz frequency reference
	(software enabled) Level: 0
	dBm typ.

Operating input voltage range

Supply voltage	+18V min, +36V
	max
	400mA typ. under +28VDC
Supply voltage (when no LNB 13/18V supply needed)	+5.6V min, +36V max

The positive voltage is on the center pin, the ground on the outer barrel.

Absolute maximum ratings

Supply voltage	+45 V max	
RF input	+20dBm max	

Mechanical Interface

Aluminum enclosure with rubberized end caps. L x W x H: 168.5mm x 138.96 mm x 40.98 mm. Includes two optional 40mm mounting flanges for mounting to a flat support plate.

Schematics

The board schematics are available on-line at http://comblock.com/download/com_1900schematics.pdf

Configuration Management

This specification is to be used in conjunction with VHDL software revision 1 and ComBlock control center revision 3.11g and above.

ARM processor firmware version: CB1900_1_6.hex 5/4/16

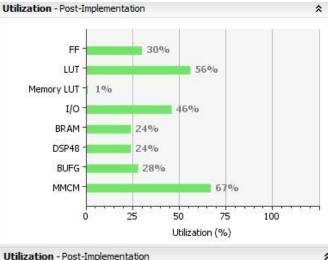
FPGA/VHDL version: COM-1931_000 8/25/15

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1931 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

Troubleshooting Checklist

Excessive power consumption:

• The receiver input is capable of supplying 13/18V DC to an external LNB. When using RF attenuators at the input in a RF loopback


test, please make sure to use a DC block between the RFin and the attenuator.

Demodulator can't achieve lock even at high signalto-noise ratios:

Make sure the modulator baseband I/Q signals • do not saturate, as such saturation would strongly distort the modulation phase information. (this is a phase demodulator!)

VHDL code / IP core

The FPGA code is written in VHDL. It does not use any third-party software. It occupies the following FPGA resources:

Utilization - Post-Implementation

Resource	Utilization	Available	Utilization %
FF	38577	126800	30.42
LUT	35720	63400	56.34
Memory LUT	86	19000	0.45
I/O	132	285	46.32
BRAM	33	135	24.44
DSP48	57	240	23.75
BUFG	9	32	28.12
MMCM	4	6	66.67

The maximum chip rate is limited by

- the FPGA technology. For example nearly 80 • Mchips/s for Xilinx Artix 7-1 speed (XC7A100T-1)
- the receiver IF band-pass filter (40 MHz • bandwidth)

The IP core, which includes all VHDL source code, can be purchased separately. It is not needed to operate the ready-to-use COM-1931 transceiver.

See www.comblock.com/download/com1831soft.pdf

ComBlock Ordering Information

COM-1931 L/S-band burst spread-spectrum transceiver

ECCN: 5A001.b.3

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com