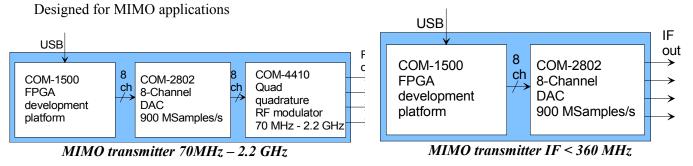
# Com Block

# COM-2802 SYNCHRONIZED 8-CHANNEL 900MSPS DIGITAL-TO-ANALOG CONVERSION

# Key Features

- High-speed Digital to Analog Conversion, 12-bit precision. Converts
  - o 8 Real channels, or
  - 4 Complex (I & Q) channels
- Synchronization across channels for sampling clock, up-conversion phase and frequency.
- Configurable as
  - Maximum bandwidth:
    - $f_s$ = 600 Msamples/s out 150 Msamples/s in, x4 interpolation 240 MHz maximum output frequency, 120 MHz max modulation bandwidth or
  - Maximum frequency: f<sub>s</sub>= 900 Msamples/s out 112.5Msamples/s in, x8 interpolation 360 MHz maximum output frequency 90 MHz max modulation bandwidth
- Programmable sampling rate: 35 to 900 MS/s by steps of 5 KS/s.
- Independent controls for each complex channel:
  - Frequency up-conversion
  - o Amplitude
  - Interpolation
- 8 preset frequencies for fast (<500µs) upconverter frequency hopping
- Output filtering for image rejection
- Sampling clock and up-conversion frequency can be locked onto an external 10 MHz ultra-stable oscillator (frequency reference).
- Monitoring & Control over USB.
- Only single +5V<sub>DC</sub> supply required. Connectorized 3"x 3" module for ease of prototyping




For the latest data sheet, please refer to the **ComBlock** web site: <u>comblock.com/com2802.html</u>. These specifications are subject to change without notice.


For an up-to-date list of **ComBlock** modules, please refer to <u>comblock.com/product\_list.html</u>

Keywords: MIMO, synchronized DACs, IF modulator, VHF, UHF, multi-channel, AD9785, ADF4351

# **Typical Applications**



# **Block Diagram**



# Electrical Interface

# Inputs / Outputs

| Digital Interface      | Definition                                                                                                                                                                      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATAxy_IN[11:0]        | Multiplexed (interleaved) digital                                                                                                                                               |
|                        | input samples for channel x and                                                                                                                                                 |
|                        | channel <i>y</i> .                                                                                                                                                              |
|                        | LVTTL.                                                                                                                                                                          |
|                        | 12-bit unsigned (also known as                                                                                                                                                  |
|                        | "offset binary") format.                                                                                                                                                        |
|                        | 0x000: maximum output level                                                                                                                                                     |
|                        | 0x3FF: minimum output level                                                                                                                                                     |
|                        | $0x1FF$ or $0x200 \approx$ center level                                                                                                                                         |
|                        | The data source must generate<br>these samples synchronously<br>with the supplied clock<br>DATACLK <i>xy</i> _OUT. The edge is                                                  |
|                        | irrelevant because the internal                                                                                                                                                 |
|                        | PLL will adjust the clock phase for best input timing.                                                                                                                          |
|                        | Note: as large input signals may<br>cause internal modulator<br>saturation, users should include<br>some margin with respect to the<br>0x000 and 0x3FF boundaries.              |
|                        | Index <i>xy</i> is 12,34,56 or 78.                                                                                                                                              |
| TX_ENABLExy            | <ul> <li>This signal serves two purposes:</li> <li>Enabling the complex channel <i>xy</i></li> <li>Demultiplexing the interleaved I/Q input samples.</li> <li>LVTTL.</li> </ul> |
|                        | The data source must generate<br>this signal synchronously with<br>the supplied clock                                                                                           |
|                        | DATACLK <i>xy</i> _OUT, in alignment<br>with DATA <i>xy</i> _IN. See the <u>timing</u> _<br><u>diagram</u> .                                                                    |
|                        | Index <i>xy</i> is 12,34,56 or 78.                                                                                                                                              |
| DATACLK <i>xy</i> _OUT | Sampling clock output, one for<br>each complex channel. Please<br>note that, even though all four<br>complex channels generally<br>operate at the same sampling                 |
|                        | rate, the four DATACLK <i>xy</i> _OUT clocks have <u>different and</u> <u>continuously adjusting phase</u> , as part of the internal timing tracking loop.                      |

|                           | LVTTL.                                                              |
|---------------------------|---------------------------------------------------------------------|
|                           | Speed: 300 MHz or 225 MHz                                           |
|                           | depending on the selected                                           |
|                           | interpolation factor.                                               |
|                           | Index <i>xy</i> is 12,34,56 or 78.                                  |
| FREQ_STROBE               | Low-voltage (3.3V / 0V) TTL                                         |
|                           | input control.                                                      |
|                           | A pulse (at least 62.5ns long)                                      |
|                           | will cause the up-conversion                                        |
|                           | frequency to jump to the next                                       |
|                           | frequency in round-robin manner.                                    |
|                           | manner.                                                             |
|                           | Used to increment the modulo-                                       |
|                           | N <sub>freq</sub> frequency pointer 0 through                       |
|                           | 7 (where N <sub>freq</sub> is defined in REG58)                     |
|                           |                                                                     |
|                           | For example, if $N_{\text{freq}} = 3$ , the                         |
|                           | frequency sequence is<br>Frequency 0 ->                             |
|                           | Frequency 1 ->                                                      |
|                           | Frequency 2 ->                                                      |
|                           | Frequency $0 > \text{etc}$                                          |
| NCO_RESET                 | LVTTL input.                                                        |
|                           | A pulse (at least 62.5ns long)                                      |
|                           | will cause the up-conversion                                        |
|                           | frequency and phase to be reset<br>in all four complex channels.    |
| EXT REF CLK               | Optional: External 10 MHz                                           |
|                           | frequency reference, typically                                      |
|                           | an ultra-stable clock.                                              |
|                           | Sine, clipped sine or square                                        |
|                           | wave;<br>J4, SMA female connector,                                  |
|                           | 50 $\Omega$                                                         |
|                           | Input is DC-blocked.                                                |
|                           | Minimum level: 2.0V <sub>pp</sub>                                   |
| Analog Interface          | Maximum level: 3.3V <sub>pp</sub><br><b>Definition</b>              |
| Analog Interface DACx P/N | Differential Analog output;                                         |
|                           | Peak amplitude: $2.0V_{PP}$ (Diff)                                  |
|                           | DC bias (common-mode                                                |
|                           | voltage): $0.5V_{DC}$                                               |
|                           | Differential PCIe Connector<br>Channel index <i>x</i> range: 1 to 8 |
| USB Monitoring &          | Mini-USB connector                                                  |
| Control                   | Type AB                                                             |
|                           | Full speed / Low Speed                                              |
| Power Interface           | $4.75 - 5.75 V_{DC}$ ; Terminal block                               |
|                           | Power consumption is ~ 780mA1.5A                                    |
|                           |                                                                     |

### **Absolute Maximum Ratings**

| Supply voltage | -8V min,             |
|----------------|----------------------|
|                | +6.5V max            |
| EXT_REF_CLK    | -0.3V min, +3.6V max |
| DACx_IN        | -0.3V min, +3.6V max |

# Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB (requires a mini-USB cable) or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

## **Configuration (Basic)**

The easiest way to configure the COM-2802 is to use the **ComBlock Control Center** software supplied with the module on CD. In the ComBlock Control Center window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-2802 module to be configured and click the *Settings* button to display the *Basic Settings* window shown below.

| COM2802 Syn       | chronized 8-Chann   | el 900MS    | PS Digital-to- | Analog Conversi   | ×      |
|-------------------|---------------------|-------------|----------------|-------------------|--------|
| Common Controls   |                     |             |                |                   |        |
| Sampling Rate:    | 90000000            | Samples/s   | External O     | ontrols 📃         |        |
| Stored Up-Convers | sion Frequencies    |             |                |                   |        |
| Frequency 0:      | 0                   | Hz          | Frequency 1:   | 100000.024        | Hz     |
| Frequency 2:      | -200000.048         | Hz          | Frequency 3:   | 300000.073        | Hz     |
| Frequency 4:      | -400000.097         | Hz          | Frequency 5:   | 4999999.912       | Hz     |
| Frequency 6:      | -5999999.936        | Hz          | Frequency 7:   | 10000000.033      | Hz     |
| Number of Freque  | ency Hopping Steps: | 1           |                |                   |        |
| Channels 1-2      |                     |             |                |                   |        |
| Ch1 ON 📝          | Inte                | erpolation: | 8 🗸            | Amplitude: 256 (0 | )-511) |
| Ch2 ON 📝          | Freque              | ency U/C in | dex: 7         |                   |        |
| Channels 3-4      |                     |             |                |                   |        |
| Ch3 ON 📝          | Inte                | erpolation: | 8 🗸            | Amplitude: 100 (0 | -511)  |
| Ch4 ON 📝          | Freque              | ency U/C in | dex: 2         |                   |        |
| Channels 5-6      |                     |             |                |                   |        |
| Ch5 ON 🔽          | Inte                | erpolation: | 8 🗸            | Amplitude: 511 (0 | -511)  |
| Ch6 ON 📝          | Freque              | ency U/C in | dex: 3         |                   |        |
| Channels 7-8      |                     |             |                |                   |        |
| Ch7 ON 📝          | Inte                | erpolation: | 8 🗸            | Amplitude: 80 (0  | )-511) |
| Ch8 ON 🔽          | Freque              | ency U/C in | dex: 4         |                   |        |
| A                 | pply Ok             |             | Advan          | Cancel            |        |

**Basic Settings Window** 

# **Configuration (Advanced)**

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C\_reference.pdf)

The module configuration parameters are stored in non-volatile memory. All control registers are read/write. Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

Programmers developing custom applications (using the <u>ComBlock API</u> instead of the supplied ComBlock Control Center graphical user interface) should know that frequency changes are enacted upon (re-)writing to the last control register REG58.

| Controls common to all channels     |                                                                                                                                  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Parameters                          | Configuration                                                                                                                    |  |
| Sampling rate <b>f</b> <sub>s</sub> | Select an output sampling rate common for all channels:                                                                          |  |
|                                     | Range 35 MHz – 900 MHz by<br>steps of 5 KHz, expressed in<br>Hz.                                                                 |  |
|                                     | REG0: bits 7:0 (LSB)                                                                                                             |  |
|                                     | REG1: bits 15:8                                                                                                                  |  |
|                                     | REG2: bits 23:16                                                                                                                 |  |
|                                     | REG3: bits 31:24 (MSB)                                                                                                           |  |
| External controls enabled/disabled  | Enable or disable the<br>FREQ_STROBE external<br>control on the J2 connector.                                                    |  |
|                                     | 0 = external control disabled                                                                                                    |  |
|                                     | 1 = external control enabled                                                                                                     |  |
|                                     | REG5(0)                                                                                                                          |  |
| Channels 1-2                        |                                                                                                                                  |  |
| Parameters                          | Configuration                                                                                                                    |  |
| Channel 1 enable                    | 0 = powered down                                                                                                                 |  |
|                                     | 1 = enabled                                                                                                                      |  |
|                                     | Note: re-enabling the circuit may take up to 250ms.                                                                              |  |
|                                     | REG10(0)                                                                                                                         |  |
| Channel 2 enable                    | 0 = powered down                                                                                                                 |  |
|                                     | 1 = enabled                                                                                                                      |  |
|                                     | Note: re-enabling the circuit<br>may take up to 250ms.<br>REG10(1)                                                               |  |
| Interpolation N <sub>i</sub>        | Interpolation factor (ratio of output sampling frequency to input sampling rate). The resulting input sampling rate is $f_s/N_i$ |  |
|                                     | The maximum input sampling<br>rate is 150 MS/s (or 300 MHz<br>as I and Q input samples are<br>interleaved).                      |  |
|                                     | 00 = x1 interpolation                                                                                                            |  |
|                                     | 01 = x2 interpolation                                                                                                            |  |
|                                     | 10 = x4 interpolation                                                                                                            |  |
|                                     | 11 = x8 interpolation                                                                                                            |  |
|                                     | REG10(3:2)                                                                                                                       |  |
| Frequency up-<br>conversion index   | Select the frequency up-<br>conversion value by pointing to<br>one of eight pre-selected                                         |  |

|                                     | frequencies stored as Frequency<br>0 through 7.                                                                                                                                                                         |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | REG10(6:4)                                                                                                                                                                                                              |
| Amplitude scale factor              | 9-bit amplitude scale factor.<br>Applies equally to both I and Q channels.                                                                                                                                              |
|                                     | Fixed-point format: 2.7                                                                                                                                                                                                 |
|                                     | For example, a nominal amplitude of 1.0 is obtained by entering the value 0x080.                                                                                                                                        |
|                                     | REG11: bits 7:0 (LSbs)                                                                                                                                                                                                  |
|                                     | REG12(0): bit 8 (MSb)                                                                                                                                                                                                   |
| Data synchronization mode           | 0 = automatic                                                                                                                                                                                                           |
| mode                                | 1 = manual                                                                                                                                                                                                              |
|                                     | REG13(7)                                                                                                                                                                                                                |
| DATACLK_OUT delay                   | When the manual data<br>synchronization mode is<br>selected above, the<br>DATACLK_OUT output clock<br>is delayed by the amount<br>specified here. Steps of 190ps.<br>Minimum delay is 0.7ns.<br>Maximum delay is 6.5ns. |
|                                     | Ignored in auto mode.                                                                                                                                                                                                   |
|                                     | REG13(4:0)                                                                                                                                                                                                              |
| Channels 3-4                        |                                                                                                                                                                                                                         |
| Same definitions as for channel 1-2 | REG14, REG15, REG16,<br>REG17                                                                                                                                                                                           |
| Channels 5-6                        |                                                                                                                                                                                                                         |
| Same definitions as for channel 1-2 | REG18, REG19, REG20,<br>REG21                                                                                                                                                                                           |
| Channels 7-8                        |                                                                                                                                                                                                                         |
| Same definitions as for channel 1-2 | REG22, REG23, REG24,<br>REG25                                                                                                                                                                                           |
| Stored up-conversion                | frequencies                                                                                                                                                                                                             |
| Frequency 0 <b>f</b> <sub>0</sub>   | Frequency up-conversion<br>(translation) from the digital<br>input samples to the analog<br>output.                                                                                                                     |
|                                     | Theoretical range:<br>- $\mathbf{f}_s / 2$ to + $\mathbf{f}_s / 2$ , expressed as<br>$2^{32*} \mathbf{f}_0 / \mathbf{f}_s$                                                                                              |
|                                     | In practice, the maximum output<br>frequency is limited to about<br>40% of the sampling frequency.                                                                                                                      |
|                                     | Frequency step: $\mathbf{f}_s / 2^{32}$                                                                                                                                                                                 |
|                                     | REG26: bits 7:0 (LSB)                                                                                                                                                                                                   |

|                                                                       | REG27: bits 15:8                                                                                |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                       | REG28: bits 23:16                                                                               |
|                                                                       | REG29: bits 31:24 (MSB)                                                                         |
| Frequency 1                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG30 (LSB), REG31, REG32,<br>REG33(MSB)                                                        |
| Frequency 2                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG34 (LSB), REG35, REG36,<br>REG37(MSB)                                                        |
| Frequency 3                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG38 (LSB), REG39, REG40,<br>REG41(MSB)                                                        |
| Frequency 4                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG42 (LSB), REG43, REG44,<br>REG45(MSB)                                                        |
| Frequency 5                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG46 (LSB), REG47, REG48,<br>REG49(MSB)                                                        |
| Frequency 6                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG50 (LSB), REG51, REG52,<br>REG53(MSB)                                                        |
| Frequency 7                                                           | Same format as Frequency 0                                                                      |
|                                                                       | REG54 (LSB), REG55, REG56,<br>REG57(MSB)                                                        |
| Number of RF<br>frequencies N <sub>freq</sub> in the<br>scanning list | Each time a FREQ_STROBE pulse is received, the frequency pointer increments modulo $N_{freq}$ . |
|                                                                       | $N_{\text{freq}}$ is in the range $1 - 8$ .                                                     |
|                                                                       | REG58                                                                                           |

| Direct access to AD9785 control registers |                                                                                 |
|-------------------------------------------|---------------------------------------------------------------------------------|
| AD9785<br>selection                       | Select which IC to write to (see schematics <sup>1</sup> for reference)         |
|                                           | Bit 0: to U3 when '1'                                                           |
|                                           | Bit 1: to U6 when '1'                                                           |
|                                           | Bit 2: to U16 when '1'                                                          |
|                                           | Bit 3: to U18 when '1'                                                          |
|                                           |                                                                                 |
|                                           | If any one of these four bits is high, the user configuration above is ignored. |
|                                           | REG59(3:0)                                                                      |
| Word size                                 | 00 when writing to an 8-bit register                                            |
|                                           | 01 when writing to a 16-bit register                                            |
|                                           | 10 when writing to a 24-bit register                                            |
|                                           | 11 when writing to a 32-bit register                                            |
|                                           | REG59(5:4)                                                                      |
| Address                                   | AD9785 address. See AD9785 SPI                                                  |

<sup>1</sup> All ComBlocks schematics are located on the supplied CD-ROM

|             | register map section for details.<br>REG60                        |
|-------------|-------------------------------------------------------------------|
| Data[7:0]   | REG61                                                             |
| Data[15:8]  | REG62                                                             |
| Data[23:16] | REG63                                                             |
| Data[31:24] | Writing to REG64 triggers a word write to the selected AD9785 IC. |

| <b>Board-specific fine calibration</b> |     |
|----------------------------------------|-----|
| Phase correction ch12                  | TBD |
| Phase correction ch34                  | TBD |
| Phase correction ch56                  | TBD |
| Phase correction ch78                  | TBD |
| Amplitude balance offset ch12          | TBD |
| Amplitude balance offset ch34          | TBD |
| Amplitude balance offset ch56          | TBD |
| Amplitude balance offset ch78          | TBD |
| DC bias correction ch1                 | TBD |
| DC bias correction ch2                 | TBD |
| DC bias correction ch3                 | TBD |
| DC bias correction ch4                 | TBD |
| DC bias correction ch5                 | TBD |
| DC bias correction ch6                 | TBD |
| DC bias correction ch7                 | TBD |
| DC bias correction ch8                 | TBD |

# Monitoring 🚺

Monitoring the status of the COM-2802 is performed by viewing the Status window in ComBlock Control Center. All register values are displayed in hexadecimal, but other formats are displayed by hovering over the hex value with the cursor.

# Custom applications can monitor module status again, by using the <u>ComBlock API</u>.

| again, by using the ComBlock API.                                   |                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameters                                                          | Monitoring                                                                                                                                                                                                                                   |  |
| PLL Lock                                                            | The PLL generating the<br>sampling clock is nominally<br>locked onto the internal or<br>external 10 MHz frequency<br>reference.<br>0 = Not Locked<br>1 = Locked<br>SREG0 bit 7                                                               |  |
| Timing alert                                                        | There are two types of timing<br>errors: data timing errors and<br>multi-DAC synchronization<br>timing error.<br>0 = Normal timing.<br>1 = Timing error.<br>SREG0 Bit 0: DAC1<br>SREG0 Bit 1: DAC2<br>SREG0 Bit 2: DAC3<br>SREG0 Bit 3: DAC4 |  |
| Internal Power Supply<br>Fault<br>(see schematics for<br>reference) | 0 = Normal Operation<br>1 = Fault Condition<br>SREG1 Bit 0: D_+4.5V<br>SREG1 Bit 1: DAC_+3.3V<br>SREG1 Bit 2: CLK_+3.3V<br>SREG1 Bit 3: DACA_+3.3V<br>SREG1 Bit 4: DACA_+1.8V<br>SREG1 Bit 5: DAC_+1.9V<br>SREG1 Bit 6: SYNTH_+3.3V          |  |
| DATACLK <i>xy</i> _OUT<br>delay                                     | Amount of delay applied to the<br>output data clock signal. Units:<br>190ps steps.<br>SREG2(4:0): delay for ch1-2<br>SREG3(4:0): delay for ch3-4<br>SREG4(4:0): delay for ch5-6<br>SREG5(4:0): delay for ch7-8                               |  |

# **Test Points**

Test points are provided for easy access by an oscilloscope probe.

| Test Point | Definition                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLL_REF    | Internal / External 10 MHz reference clock.                                                                                                                                                                                  |
| PLL_LOCK   | The PLL generating the sampling clock is<br>nominally locked onto the internal or<br>external 10 MHz frequency reference.<br>Active high: '1' when locked. This<br>information is also available in status<br>register SREG0 |

# Operations

## Input / Output Sampling Rates

The output sampling rate and the interpolation factor are user-defined parameters. This allows the user to trade-off maximum bandwidth versus maximum output frequency. The maximum settings are as follows:

#### Maximum bandwidth configuration

- 150 MS/s complex data input (300 MHz DATACLK\_OUT)
- x4 interpolation,
- **f**<sub>s</sub>=600 MS/s effective DAC sampling rate
- 240 MHz maximum output frequency
- 120 MHz maximum (two-sided) usable modulation bandwidth.

#### Maximum frequency configuration:

- 112.5 MS/s complex data input (225 MHz DATACLK\_OUT),
- x8 interpolation,
- **f**<sub>s</sub>=900 MS/s effective DAC sampling rate
- 360 MHz maximum output frequency,
- 90 MHz maximum (two-sided) usable modulation bandwidth.

#### Synchronization

\_

All eight channels are synchronized (when identically configured) in terms of :

- Sampling clock
- Up-conversion frequency and phase.

Four Numerically Controlled Oscillators (NCOs) control the up-conversion frequencies when transmitting complex signals. In order to

synchronize all NCOs, the user must generate an NCO reset pulse.

#### **IF Modulator**

Each complex channel can be translated in frequency between +/-  $0.4 f_s$  using an independent 32-bit NCO.

The COM-2802 can therefore be used as an IF modulator for frequencies up to 360 MHz.

#### Unmodulated carriers test mode

The COM-2802 can be operated in stand-alone mode (i.e. no input) to generate unmodulated carriers.

#### **Frequency Hopping**

Frequency Strobe allows for quick jumps of upconversion frequencies among 8 pre-selected values. Switching is in a "round robin" fashion sequentially through up to 8 frequencies (the actual number of frequencies in the round robin pool is set by  $N_{freq}$ . For example, when  $N_{freq} = 3$ , the upconversion frequencies will be selected in the following index sequence: 0,1,2,0,1,2,0,1,2...

FREQ\_STROBE is an edge-triggered signal. FREQ\_STROBE pulse width should be at least 62.5nS long. Switching time using the FREQ\_STROBE signal is < 500µs.

#### Internal vs. External Frequency Reference for Frequency Synthesizer

An external 10 MHz frequency reference can be used when precise frequency stability is required. In this case, simply connect a 10 MHz sine, clipped sine or square wave to the J1 EXTERNAL\_FREQ\_REF female SMA connector. Detection is automatic, thus no configuration change is needed. Upon removal of the external frequency reference signal, the module reverts to the internal frequency reference.

# DACs detailed configuration registers

The COM-2802 comprises four Analog Devices AD9785 dual DACs.

The user interface was designed to simplify the task of configuring the COM-2802 for the most common applications. However, many more features are accessible by directly programming the Analog Devices AD9785 dual DACs.

The AD9785 detailed registers are listed in the specifications in the "SPI Register Map" section: <u>http://www.analog.com/static/imported-files/data\_sheets/AD9785\_9787\_9788.pdf</u>

By setting one or multiple 1's in control register REG47, the user can enable writing to one, two, three or all four AD9785 ICs simultaneously.

To avoid any conflict, the configuration stored in REG0 through 45 is unchanged while performing a direct write to the AD9785 control registers.

### DACs default configurations

- Inverse sinc (x/sin(x)) enabled
- PN code synchronization mode
- Single port mode (interleaved I/Q)
- PLL off: DAC sampling clock is sourced directly from the ADF4351 RF frequency synthesizer
- Automatic data synch timing optimization mode.

# Timing

#### Input Samples Synchronization

Adjacent odd and even (1 and 2, 3 and 4, etc.) input channel samples are multiplexed over the same 12bit interface. TX\_ENABLE indicates which channel, '1' for the odd channel and '0' for even. TX\_ENABLE must be aligned with the data samples, within 2.4nS. From the user's perspective, there is no timing offset requirement between incoming DATACLK\_OUT and the outgoing data. Any offset is automatically compensated for internally. All four DATACLK\_OUTs have the same frequency but the phase may be different. All four data clocks must be used for their respective pair of input channels. The maximum DATACLK\_OUT frequency is 300 MHz.

| Data format: unsigned (offset binary). |
|----------------------------------------|
| DATACLK_OUT                            |
| DATA_IN[11:0]                          |
| TX_ENABLE                              |
|                                        |
| Complex input, interleaved I/Q samples |
| Complex input, interleaved I/Q samples |
|                                        |
| DATACLK_OUT                            |

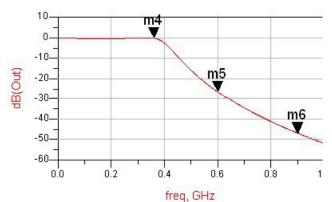
Interleaved input samples for channels 1 and 2

In automatic mode, the DATACLK\_OUT output signal is automatically delayed so that input samples DATA\_IN are sampled at the optimum time by the DAC. However, in some cases, the data synchronization algorithm can reach a false lock, resulting in the wrong output waveform. If this happens, a manual override mode is available.

## Performance

#### **Internal Clock Reference**

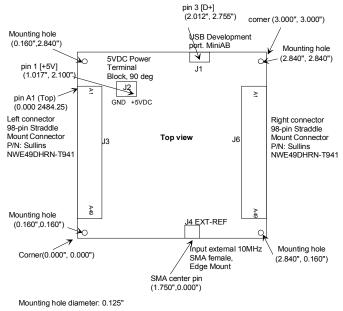
The internal crystal performance is as follows:


- Tolerance: 40 ppm max @25C
- Temperature stability (-10C to +60C): ± 50 ppm max
- Aging: ±5ppm/year max (1<sup>st</sup> year) @25C

#### Sampling Clock Phase Noise

Measured at 900 MHz -89 dBc @ 1 KHz -93 dBc @ 10 KHz -105 dBc @100 KHz

#### Low Pass Filter


Each D/A Converter is followed by a 5-pole Chebychev low-pass filter to suppress clock spectral spurious lines and aliasing. The filter response is as follows:

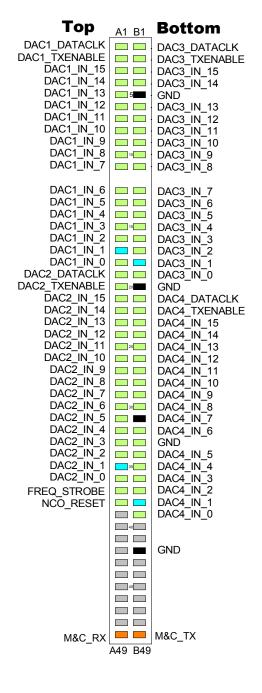


Passband: 0 – 360 MHz Passband gain flatness: better than ±0.3 dB in any 100 MHz sub-band. Rejection at 600 MHz: 27 dB Rejection at 900 MHz: 46 dB

Out of band spectral spurious lines: < -84dBc in any 3 KHz band.

# Mechanical Interface

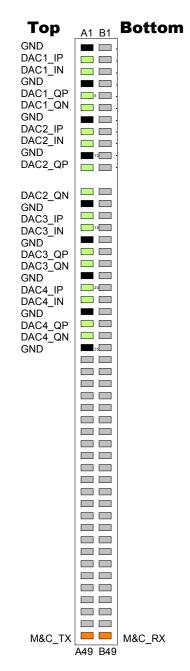



Maximum height 0.500"

## Pinout

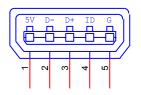
#### **Digital Input Connector, J3**

98-pin Female Connector


This connector is designed for a direct connection to FPGA-based ComBlocks (COM-160x, COM-150x)



# Analog Output Connector, J6


98-pin Female Connector

This connector is designed for a direct connection to the COM-4410 [70 MHz – 2.2 GHz] 4-CHANNEL QUADRATURE RF MODULATORS.



### Mini USB Connector, J1

The COM-2802 is a USB device with a mini type AB connector. (G = GND)



### I/O Compatibility List

(not an exhaustive list)

| Input                 | Output                        |
|-----------------------|-------------------------------|
| COM-1500 FPGA + ARM   | <u>COM-4410</u> [70 MHz – 2.2 |
| development platform  | GHz] 4-channel quadrature     |
|                       | RF modulators                 |
| COM-1700 Low-power    | COM-400x quadrature           |
| compact development   | modulators                    |
| platform FPGA + ARM + |                               |
| DACs + ADCs + VGA +   |                               |
| GbE LAN + USB2+       |                               |
| NAND + TCXO + RS422   |                               |

# **ComBlock Ordering Information**

COM-2802 SYNCHRONIZED 8-CHANNEL 900 MS/s DIGITAL-TO-ANALOG CONVERSION

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com