

COM-3008/3009 DUAL ANALOG-TO-DIGITAL CONVERSION

Key Features

- COM-3008: 210 MSamples/s dual 10-bit COM-3009: 130 MSamples/s dual 12-bit
- Built-in 24 dB gain control to increase the effective ADC dynamic range.
- Sensitivity: -26 dBm / 31mVpp minimum input level for full scale output samples.
- Input bandwidth: 200 MHz
- <u>Sampling rate is user-selectable</u> in the range from 40 to 210 Msamples/s.
- Sampling clock can be:
 - o External
 - Programmable locked onto an internal frequency reference.
 - Programmable locked onto an external (ultra-stable) frequency reference.
- Multiple receivers can be synchronized in terms of the ADC sampling rate by using external frequency references.
- One of several anti-aliasing filter bandwidth options –B can be selected at the time of ordering:
 - o 50 MHz bandpass (default)
 - no filtering (for flexible IF undersampling)
 - custom 70 MHz or 140 MHz centered filters.
- SMA connectors. Single 5V supply. Connectorized 3"x 3" module for ease of prototyping.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com3008.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

EXT_FREQ_REF (10 MHz)

Electrical Interface

Inputs / Outputs

Inputs	Definition
ANALOG_I_IN	0 - 200 MHz bandwidth.
ANALOG_Q_IN	Receiver sensitivity: 63mVpp at
	input for full scale signal at A/D
	converter when $AGC_{IN} = 0V$
	(maximum gain).
	Maximum input (operating): 1Vpp
	when $AGC_{IN} = 3.3V$ (minimum
	gain).
	Maximum input (no damage):
	3.6Vpp
	A DC block with a 20 Hz (-3dB)
	cutoff frequency is installed by
	default. It can be removed upon
	request at the time of order (Option –
	A), in which case the common mode
	voltage is 2.25V.
	SMA male connectors.500hm
	impedance.
EXT_FREQ_REF	Optional input. External 10 MHz
	frequency reference for frequency
	synthesis.
	Sinewave, clipped sinewave or

	squarewave. J8 SMA male connector. 50 Ohm.
	Minimum level: 2Vpp.
	Maximum level: 3.3Vpp.
EXT_ADC_CLK	Optional input. Externally supplied Analog-to-Digital converter
	sampling clock (when DDR is
	enabled) or double frequency ADC
	sampling clock (when DDR is
	disabled). Enabled or disabled by
	jumper JP1 selection. LVTTL 0 – 3.3V.
	Selecting sampling rates less than
	half the baseband filter bandwidth
	may result in aliasing. Supply this
	clock at J4/A14
	Sampling frequency:
	Min: 20 MHz
	Max: 210 MHz
Digital Output	Definition
Signals	Demitton
DATA1 OUTIOO	10 bit digital complex
DATA2 $OUT[9:0]$	Unsigned format: 0x200 represents a
	zero. 0x000 the most pagetive signal
	2ero, 0x000 the most negative signal,
	UXSEF me most positive signal.
	At lower sampling rates,
	DATA1_OUT conveys the In-phase
	samples while DATA2_OUT
	conveys the Quadrature samples.

	At higher sampling rates a dual data rate (DDR) interface is used and the in-phase and quadrature samples are interlaced. See <u>timing diagram</u> for
	details.
CLK_OUT	Analog-to-digital converter sampling clock. 40 Msamples/s if internal selection otherwise
	EXT ADC CLK's frequency
	Read the samples at the rising edge of CLK_OUT.
AGC_IN	Input signal to control the analog gain prior to A/D conversion. Can be digital (pulse-width modulated) or analog.
	The purpose is to use the maximum dynamic range while preventing saturation at the A/D converter. 0 is the maximum gain, +3V is the minimum gain.
	Without any subsequent module, the COM-3008's gain is set at its maximum and may thus saturate.
	See the <u>AGC section</u> for more details.
Power Interface	4.75 – 5.25VDC. Terminal block.
	Power consumption is 500mA typ.
	when sampling at the maximum rate
	of 210 MSamples/s.

Absolute Maximum Ratings

Supply voltage	-60V min,
	+6.6V max
Digital inputs, EXT_FREQ_REF	-0.5V min,
Important: Digital I/O signals are 0-	+3.6V max
3.3V LVTTL. Inputs are NOT 5V	
tolerant!	

Configuration

Complete assemblies can be monitored and controlled centrally through adjacent ComBlocks' asynchronous serial, LAN/TCP-IP, USB, or CardBus connection.

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-3008 is to use the ComBlock Control Center software supplied with the module. After detecting the ComBlock modules (2nd button from left), highlight the COM-3008 module to be configured. Then press the settings button (3rd button from the left).

킂 COM3008 Dual Analog to Digital Converter Basic S 🔀
ADC Sampling Frequency: 210000000 Hz
✓ Internal ADC Sampling Clock
DDR Output Interface
Apply Ok Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

Programmers developing custom applications (using the <u>ComBlock API</u> instead of the supplied ComBlock control center graphical user interface) should know that frequency changes are enacted upon (re-)writing to the last register (REG4).

Parameters	Configuration				
ADC sampling	Sampling frequency can be				
frequency	programmed over the range 40				
	Msamples/s to 210 Msamples/s.				
	Step size is 0.5 MHz or 1MHz when the				
	double data rate output is enabled (see				
	REG4 bit1).				
	The programmed frequency must be				
	consistent with the jumpers Always				
	check that the PLL LOCK status test				
	point is high after changing this				
	parameter.				
	Data notas abova 105 MSammlas/a				
	Data rates above 105 WiSamples/s				
	output See REG4 bit 1				
	output. See KEO4 oft 1.				
	Expressed in Hz.				
	REG0: bit 7:0 (LSB)				
	REG1: bit 15:8				
	REG2: bit 23:16				
	REG3: bit 31:24 (MSB)				
Internal ADC	Selection of the external ADC sampling				
sampling clock	clock EXT_ADC_CLK or the internal				
UN/OFF	sampling clock is done primarily by				
	Jumper. This control bit allows the user				
	to switch off the internal sampling clock				
	generation when using the external				
	clock, so as to minimize noise.				
	0 = OFF				
	1 = ON				
	REG4 bit 0				
DDR output	Depending on the sampling speed, the				
Interface	output format can be interlaced double				
	data rate or simple I/Q.				
	0 = simple output can be used for				
	sampling rates in the range				
	[40-105MHz].				
	1 = Interlaced. double data rate (DDR)				
	output format. See Timing . Can be				
	used for sampling rates in the range				
	[80–210 MHz]				
	PEGA bit 1				
	KEU4 UIL I				

Configuration example:

40 Msamples/s internal clock configuration REG0/1/2/3/4 = 00 5A 62 02 01 Jumper JP1 in position 1-2 Frequency selection jumpers in positions: 1A + 2A

Monitoring

Parameters	Monitoring
PLL lock status	Indicates the clock frequency
(PLL_LOCK)	synthesizer lock status: locked to the
	frequency reference (1) or unlocked
	(0).
	SREG0 bit 0

Test Points

Test points are provided for easy access by an oscilloscope probe.

Test Point	Definition
TPI	Baseband signal, I-channel, at A/D
	converter input. The nominal amplitude is
	1Vpp when the AGC loop is closed with
	the following demodulators (COM-1001,
	COM-1011/1018, COM-1027, COM-1008
	or equivalent).
TPQ	Baseband signal, Q-channel, at A/D
	converter input. Same type as above.
PLL_LOCK	Frequency synthesizer PLL lock status.
	Active low: '1' when locked. This
	information is also available in status
	register SREG0
PLL_REF	Internal / External reference clock
	Note: do not connect any permanent test
	cable to this test point as it is likely to
	cause a significant degradation in phase
	noise performance.

Operations

Select the sampling frequency

One of the unique feature of the COM-3008 is the ability to select the best sampling frequency for a given application. The COM-3008 can thus be configured for baseband sampling or for IF undersampling. The figures below illustrate the spectral relationship between analog input and sampled output.

Input/Output Spectrum. Baseband Input.

Input/Output Spectrum. Input centered around non-zero frequency. IF undersampling.

Programming the Sampling Clock

The sampling frequency is programmable over a range of [40 -210 Msamples/s] This range is segmented into jumper-selectable regions:

Sampling rate range	Jumpers J3/J7
(Msamples/s)	
40-46 or 80-92 (when DDR)	1A+2A
45-52 or 90-104 (when DDR)	1A+2B
52-58 or 104-116 (when DDR)	1B+2B
55-65 or 110-130 (when DDR)	1C+2C
61-72 or 122-144 (when DDR)	1C+2A+ 2C
69-86 or 138-172 (when DDR)	1D+2C
85–91 or 170-182 (when DDR)	1D+2D
90–97 or 180–194 (when DDR)	1B+1D + 2D
98–118 or 196–236 (when DDR)	1E+2D

Within each region, the sampling frequency is software programmable by steps of 0.5MSamples/s (1MSamples/s when DDR output) under user control.

Jumper locations

Internal vs External frequency reference for sampling clock.

An external 10 MHz frequency reference can be used when the user application requires high frequency stability. In this case, simply connect a 10 MHz sinewave, clipped sinewave or square wave to the J8 EXTERNAL FREQ REF SMA connector. Detection and switching is automatic, thus no configuration change is needed. Upon removal of the external 10 MHz frequency reference signal, the COM-3008 reverts to the internal frequency reference.

Internal vs External ADC sampling clock

The source for the Analog to Digital converter clock can be selected to be internal (programmable) or external by changing the JP1 jumper.

The external clock EXT_ADC_CLK is to be supplied at J5/A14 and must be in the range 210 Msamples/s max, 20 Msamples min.

In addition, the internal sampling clock generation can be switched off by software so as to minimize noise. See control REG4 bit 0.

Warning: selecting sampling rates less than half the baseband filter bandwidth may result in aliasing.

AGC

The default Automatic Gain Control (AGC) mechanism assumes than an external circuit (a demodulator for example) detects saturation conditions at the Analog-to-Digital converter and adjusts the receiver gain AGC_IN accordingly, as illustrated below:

The AGC_IN signal can be a simple pulse-width modulated (PWM) digital signal or an analog signal from a DAC. The AGC_IN signal undergoes low-pass filtering within the COM-3008 in order to average out a PWM control signal. By default, the AGC response time is limited to approximately 1 second by the two RC low-pass filters where $R = 100K\Omega$ and $C = 1\mu F$.

Where applications require faster AGC response time, a few µseconds in the case of burst receivers for example, the RC low-pass filter bandwidth can be greatly increased by changing two resistors and/or capacitors. The COM-3008 AGC response time can be specified at the time of order.

Timing

The COM-3008 interface depends on the sampling rate (see control register REG4 bit 1)

When REG4(1) = '0', the DATA1_OUT and DATA2_OUT signals are dedicated to I and Q samples respectively. Users should reclock these signals at the rising edge of CLK_OUT.

CLK_OUT		<u> </u>		<u> </u>		<u> </u>		$\overline{}$
DATA1_OUT	10	_X	11	_X	12	_X	13	
DATA2_OUT	Q0	_X	Q1	_X	Q2	_X	Q3	_X

When REG4(1) = `1', a dual data rate (DDR) scheme is used whereby I and Q samples are interlaced as illustrated by the timing diagram below. Users should reclock these signals at the rising and falling edges of CLK_OUT.

CLK_OUT		<u> </u>		\	/	\	/	\
DATA1_OUT	10 (Q0) (12) Q2	χ 14) Q4) I6) Q6	_)
DATA2_OUT	<u> </u>	(Q1) I3) Q3) I5) Q5) I7	χ

Schematics

The schematics are available on the ComBlock CD shipped with every module. See the "Hardware Schematics" folder.

Interfacing with FPGA development platforms

In order to facilitate the (DDR) interface between the COM-3008 and FPGA development platforms such as the COM-1400, ComBlock has developed a VHDL project which is available on the ComBlock website and on the ComBlock CD-ROM.

Performance

Internal Clock Reference

The internal crystal performance is as follows:

- tolerance: [-20 to +5] ppm max @25C
- temperature stability (-10C to +60C): ± 50 ppm max
- aging: ±5ppm/year max (1st year) @25C

Receiver Sensitivity

The receiver sensitivity is defined at the minimum input level yielding a full-range (1Vpp) baseband signal at the analog-to-digital converter. Sensitivity @ 1 MHz: -26 dBm.

Sampling Clock Phase Noise

When using the internal clock, the typical phase noise is:

- - 85 dBc @ 1 KHz
- - 90 dBc @ 10 KHz

Internal sampling clock phase noise: 210 MSamples/s. 100 KHz span, 2 KHz resolution bandwidth.

Low Pass Filter

Each A/D converter is preceeded by a low-pass filter so as to reduce the input signal bandwidth and avoid aliasing at the A/D converter.

The baseline (-B0) filter response is Cutoff frequency: (@-1dB): 80 Hz to 46 MHz Cutoff frequencies (@-3dB): 20 Hz, 50 MHz Rejection @100MHz: > 30 dB.

Other filters can be selected at the time of order. List options here.

A 20 Hz (@-3 dB) high-pass filter is used to block the DC bias caused by LO leakage through the input connector.

Mechanical Interface

Pinout

M&C Connector J7

12-pin (2 rows x 6) 2mm male connector.

Output Connector J5 (COM-3008)

40-pin (2 rows x 20) 2mm male connector.

Output Connector J5 (COM-3009)

40-pin (2 rows x 20) 2mm male connector.

M&C Connector J6

12-pin (2 rows x 6) 2mm female connector.

	А1 В1	1
		GND
M&C RX	••	M&C TX
	$\circ \bullet$	GND
	В6 А6	

I/O Compatibility List

(not an exhaustive list)	
Input	Output
	<u>COM-1001</u> , <u>COM-1018</u> , <u>COM-1027</u>
	demodulators (@ 40 MSamples/s)
	COM-8002 High-speed data acquisition.
	256MB, 1Gbit/s, 40 Msamples/s.
	COM-1023 AWGN noise generator
	(@ 40 MSamples/s)
	COM-1024 Multipath generator
	(@ 40 MSamples/s)
	COM-1200, COM-1400 FPGA development
	platforms (full 210 Msamples/s)
	COM-2001 Dual D/A converter (baseband)
	(40-105 MSamples/s)
	COM-1501 Arbitrary Waveform Signal
	Generator

Configuration Management

This specification is to be used in conjunction with Atmel microcontroller software revision 8.

ComBlock Ordering Information

COM-3008	Dual Analog-To-Digital Conversion, 10-bit 210 Msamples/s.
COM-3009	Dual Analog-To-Digital Conversion, 12-bit 130 Msamples/s.

Select one or several of the options below:

Option –A: Input DC block:

- -A1: on (default)
- -A0: removed

Option B: anti-aliasing filter:

- -B1: 50 MHz LPF (default)
- -B2: no filter;

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com