

COM-3505 Dual-Band 2.4/5 GHz 2x2 MIMO Transceiver

Key Features

- Dual-Band half-duplex transceiver.
 - \circ 2.4 2.5 GHz
 - $\circ \quad 4.9-5.85 \; GHz$
 - −85 dBm sensitivity
 - +15 dBm usable power at 5GHz
 - +18 dBm usable power at 2.4 GHz
 - \circ Tx/Rx switch time < 2µs
 - Bandwidth: 40 MHz
- Two simultaneous channels can be configured
 - o as 2x2 MIMO, or
 - as independent channels with distinct center frequencies.
- Baseband interface: differential analog signal
- RF interface: 50 Ohm SMA antenna port.
- USB port for monitoring and control.
- Only single +5V_{DC} supply required. Connectorized 3"x 3" module for ease of prototyping

Applications Examples

3-module 2x2 MIMO configuration

1 channel high-performance signal processing

2x2 MIMO configuration, Large Xilinx Spartan-6 FPGAs

2(<u>COM-1500</u> + <u>COM-3504</u>) + COM-3505

For the latest data sheet, please refer to the **ComBlock** web site: <u>comblock.com/com3505.html</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>comblock.com/product_list.html</u>

Block Diagram (1 of 2 channels)

Com Block COM-3505 Dual-Band 2.4/5 GHz 2x2 MIMO Transceiver

Electrical Interface

Baseband	Definition
Interface	
98-pin J3	
$RXx_IP/$	Channel <i>x</i> differential outputs. (_P
RXx_IN	for +, _N for -), -), I for in-phase,
	Q for quadrature.
$RXx_Q_P /$	
RXx_Q_N	2Vpp maximum differential
	voltage (1Vpp on each RXx_P and
	RXx_N signal).
	Load minimum differential
	resistance: 10 KOhm.
	AC complete Descision and in
	AC-coupled. Receiving end is
	signals to the desired common
	mode voltage 2dP out off
	frequency: 100 Hz
TVr ID/	Channely differential inputs (D
$TX_r I N$	for $+$ N for $-$) I for in-phase O
	for quadrature
TXr O P/	ioi quadrature.
$TX_{r} Q_{I}$	Full range 2 0Vpp differential
	(1 0Vpp on each TXr P and
	TXx N signal).
	AC-coupled inputs.
	1 1
	Input impedance: 60 KOhm.
RXx_RSSI	Channelx received RF signal
	strength output.
	Analog output.
	Range 0.5 – 2.5V
	Slope: 22.5mV/dB
	Settling time < 1us
RXx_AGC	Receiver gain control.
	Analog input in the range 0 –
	3.3V.
	Range $> 90 \text{ dB}$
	log scale.
	0V yield the maximum gain.
	Meaningful only when selecting
	the external AGC loop mode.
	Ignored otherwise.
RX TXNx	Receive/Transmit# selection.

	'0' = transmit
	1' = receive.
	Controls the T/R switch.
	LVTTL input.
	Recommended guard time: 5us
TXr POWER DET	Transmitter directional power
	detection Represents a
	measurement in the range 0 20
	dBm prior to the T_x/R_x antenna
	switch 1 dB accuracy
	Analog autout in the range 0.25
	Analog output in the range 0.55 –
TY CADLOTDI	U.9V. Non-Inear scale.
IXX_GAIN_CIRL	I ransmitter gain control.
	Analog input in the range $0 - 2$
	3.3V.
	Range: 30 dB
	Non-linear scale.
	3.3V yield the maximum gain.
FREQ_STROBEx	Low-voltage (3.3V / 0V) TTL
	input control.
	Used to increment the modulo-
	N _{freq} frequency pointer (where N _{freq}
	is defined in Register 35)
	RF frequency 0 ->
	RF frequency 1 ->
	RF frequency 2 ->
	RF frequency $0 > \text{etc}$
	Rising edge triggered.
	Minimum pulse width: 10 µsec.
Antenna port	Definition
ANTx	50 Ohm, SMA female connector
	with standard thread (i.e. not
	compatible with a reverse thread
	antenna).
	,
	Rx sensitivity: -85 dBm
	Maximum input level: + 10 dBm
	1
	Usable tx power:
	+15 dBm @ 5 GHz
	+18 dBm@2.4 GHz
External	Definition
frequency	
reference	
FREO REFr	Optional higher-stability external
	frequency reference
	10 MHz or 20 MHz
1	

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2016 Issued 7/23/2016

	Sinewave, clipped sinewave or
	squarewave.
	-
	J6 SMA female connector. 50
	Ohm.
	Minimum level: 2Vpp.
	Maximum level: 3.3Vpp.
Other Interfaces	Definition
USB Monitoring	Mini-USB connector
& Control	Type AB
	Full speed / Low Speed
Power Interface	$4.75 - 5.75 V_{DC}$; Terminal block
	Power consumption is
	500 mA 2ch receive only
	1300 mA 1ch transmit
	2500 mA 2ch transmit at

Absolute Maximum Ratings

Supply voltage	-8V min,
	+6.5V max
Baseband input	-0.3V min, +3.6V
signals	max
ANT input	+10 dBm

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB (requires a mini-USB cable) or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN,
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-3505 is to use the **ComBlock Control Center** software supplied with the module on CD. In the ComBlock Control Center window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-3505 module to be configured and click the *Settings* button to display the *Basic Settings* window shown below.

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

The module configuration parameters are stored in non-volatile memory. All control registers are read/write. Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

🄁 COM3505 Dual-band 2.4/5GHz 2x2 MIMO Transceiver 💻
Stored Frequencies
frequency index: 3 [0-7]
frequency: 5875000000 Hz
Transceiver 1
frequency index: 2 [0-7]
frequency: 2420000000 Hz
Rx LPF bandwidth: 7.5 MHz 👻
Tx LPF bandwidth: 12 MHz 👻
Initial RF Gain: 0 [0-95]
AGC mode: external loop 👻
Power down
Transceiver 2
frequency index: 3 [0-7]
frequency: 5875000000 Hz
Rx LPF bandwidth: 18 MHz 👻
Tx LPF bandwidth: 24 MHz 👻
Initial RF Gain: 0 [0-95]
AGC mode: external loop 👻
Power down
Apply Ok Advan Cancel

Basic Settings Window

Channel 1	
Parameters	Configuration
Frequency	Select the frequency translation
translation index	value by pointing to one of eight
	pre-selected frequencies stored as
	Frequency 0 through 7. Writing to
	this register causes the frequency
	synthesizer to be reprogrammed.
	REG0(2:0)
Power Down	0 = normal operation
	1 = power down
	1
	REG0(7)
Receive AGC	Select the receive AGC loop.
loop selection	1
1	0 = open loop. The receive gain is
	fixed according to the value set in
	control register REG2.
	2 = external AGC loop. Follow-on
	modules (demodulator for example)
	adjust the receive gain based on the
	supplied RX_RSSI information and
	other salient level information such
	as PV I/O level possible saturation
	at the system of A/D converter at
	at the external A/D converter, etc.
	The gain control signal is
	KAI_AGC.
	PEG1(1:0)
Ry-only or Ty-	Generally, the transceiver is
only modes	configured to switch repidly between
only modes	transmit and receive mode under
	transmit and receive mode under
	control of the external KA_TANT
	signal. For applications requiring
	transmit only or receive only mode
	or operation, the mode can be fixed
	by this control register.
	$0 = as controlled by RX_TXN1$
	$1 =$ receive-only. RX_TXN1 ignored
	$2 = \text{transmit-only. RX_TXN1}$
	ignored
D ' 1	KEGI(3:2)
Receiver low-	LPF -3dB corner frequency (one-
pass filter	sided bandwidth).
programmable	00 = 7.5 MHz
bandwidth	01 = 9.5 MHz
	10 = 14 MHz
	11 = 18 MHz

Transmitter low-	LPF -3dB corner frequency (one-
pass filter	sided bandwidth).
programmable	00 = 12 MHz
bandwidth	01 = 18 MHz
	10 = 24 MHz
	REG1(7:6)
Initial receive gain	Initial receiver RF gain (before the
	AGC takes over). Approximately 2
	dB steps.
Channel 2	REG2(6:0)
Deremotors	Configuration
Same parameters	Use $\text{REG3}/4/5$ (with the same
as for channel 1	definitions as $\text{REG0}/1/2$ for channel
as for channel 1.	
Common controls	(all channels)
Parameters	Configuration
Analog test point	Select which analog signal is to be
selection	monitored at the multi-purpose test point labeled TPA:
	0= disabled (for slightly faster AGC
	response)
	$1 = RX1_RSSI$
	$2 = RX2_RSSI$
	$3 = RX1_AGC$
	4 = RX2 AGC
	$5 = TXI_GAIN_CTRL$
	$6 = TX2_GAIN_CTRL$
	$7 = 1XI_POWER_DEI$
	8 = 1X2_POWER_DET
	See schematics for more details
	about these signals.
	REG6(3:0)
Stored un-convers	sion frequencies
Frequency 0 f	Frequency translation between the
	baseband and RF inputs/outputs The
	RF frequency synthesizers are
	reprogrammed upon (re-)writing to
	the frequency translation index
	register (REG0/3)
	Valid ranges:
	2412 - 2500 MHz
	4900 – 5350 MHz
	34/0 - 38/3 MHZ
	Expressed in units of 2 Hz
	Steps of 228Hz (2.4GHz band) or
	382 Hz (5GHz band)
	REG8: bits 7:0 (LSB)
	REG9: bits 15:8
	KEG10: DITS 23:10

	REG11: bits 31:24 (MSB)
Frequency 1	Same format as Frequency 0
	REG12 (LSB), REG13, REG14,
	REG15(MSB)
Frequency 2	Same format as Frequency 0
	REG16 (LSB), REG17, REG18,
	REG19(MSB)
Frequency 3	Same format as Frequency 0
	REG20 (LSB), REG21, REG22,
	REG23(MSB)
Frequency 4	Same format as Frequency 0
	REG24 (LSB), REG25, REG26,
	REG27(MSB)
Frequency 5	Same format as Frequency 0
	REG28 (LSB), REG29, REG30,
	REG31(MSB)
Frequency 6	Same format as Frequency 0
	REG32 (LSB), REG33, REG34,
	REG35(MSB)
Frequency 7	Same format as Frequency 0
	REG36 (LSB), REG37, REG38,
	REG39(MSB)
Number of RF	Each time a FREQ_STROBE pulse
frequencies N _{freq} in	is received, the frequency pointer
the scanning list	increments modulo N _{freq} .
	N_{freq} is in the range $1-8$.
	REG40

Monitoring 🚺

Monitoring the status of the COM-3505 is performed by viewing the Status window in ComBlock Control Center. All register values are displayed in hexadecimal, but other formats are displayed by hovering over the hex value with the cursor.

Parameters	Monitoring
Internal Power Supply	0 = Normal Operation
Fault	1 = Fault Condition
	SREG0(0)
RF synthesizers lock	1 indicates that the frequency
detect	synthesizer is locked.
	SREG1(0): ch1 synth. lock
	SREG1(1): ch2 synth. Lock
Channel 1 RSSI	SREG2
Channel 2 RSSI	SREG3
Channel 1 rx gain	SREG4 Range 0 - 95
Channel 2 rx gain	SREG5 Range 0 – 95
Channel 1 tx power	Transmit power detection.
detection	Range 0 to 20 dBm.
	1dB accuracy.
	Inverted scale:
	0 = 0 dBm
	0 = 20 dBm@2.4 GHz
	0 = 18 dBm @ 5 GHz
	Valid only while transmitting.
	SREG6: LSB
	SREG7(3:0): MSB
Channel 2 tx power	SREG8: LSB
detection	SREG9(3:0): MSB

Test Points

Test points are provided for easy access by an oscilloscope probe.

osemoseope	51000
Test Point	Definition
RX1_I / TP2	Received ch1 baseband in-phase signal
RX1_Q /	Received ch1 baseband quadrature signal
TP3	
RX1_RSSI /	Received ch1 signal strength
TP4	
RX2_I / TP5	Received ch2 baseband in-phase signal
RX2_Q /	Received ch2 baseband quadrature signal
TP6	
RX2_RSSI/	Received ch2 signal strength
TP7	
TPA	Multi-purpose analog test point.
	Represents one of several analog signals
	as selected using control register REG6

Operations

Internal vs External Frequency Reference

An external 10 MHz frequency reference can be used when the user application requires high frequency stability. In this case, simply connect a 10 MHz sinewave, clipped sinewave or square wave to the J6 EXT-REF SMA connector. Detection is automatic, thus no configuration change is needed. Upon removal of the external 10 MHz frequency reference signal, the COM-3505 automatically reverts to the internal frequency reference.

Receive Gain Control

The receiver AGC loop is split between this module and an external 'brain' (external AGC loop). This module is the gain actuator while the gain adjustment decision is taken by an external circuit based on various sensors, including the RX_RSSI received level, RX_I/Q level, etc. The gain control signals are RX1_AGC and RX2_AGC for transceiver 1 and 2 respectively.

The receiver AGC loop can also be open while the user defines a fixed receiver gain.

Frequency Hopping

Frequency Strobe allows for quick jumps of upconversion frequencies among 8 pre-selected values. Switching is in a "round robin" fashion sequentially through up to 8 frequencies (the actual number of frequencies in the round robin pool is set by N_{freq} . For example, when $N_{freq} = 3$, the upconversion frequencies will be selected in the following index sequence: 0,1,2,0,1,2,0,1,2...

FREQ_STROBE is an edge-triggered signal. FREQ_STROBE pulse width should be at least 62.5nS long. Switching time using the FREQ_STROBE signal is < 500µs.

Schematics

The schematics are available on the ComBlock CD shipped with every module (in the "Hardware schematics" folder).

Performance

Internal Clock Reference

The internal crystal performance is as follows:

- tolerance: [-5 to +15] ppm max @25°C
- temperature stability (-10°C to +60°C): ± 50 ppm max
- aging: ±5ppm/year max (1st year) @25°C

Frequency Synthesizer

Phase noise @2.4GHz:

- -89 dBc/Hz @ 1KHz from the carrier
- -90 dBc/Hz @ 10 KHz from the carrier
- -90 dBc/Hz @ 100 KHz from the carrier

Phase noise @5GHz

- -86 dBc/Hz @ 1KHz from the carrier
- -86 dBc/Hz (a) 10KHz from the carrier
- -86 dBc/Hz (a) 100KHz from the carrier

Mechanical Interface

Pinout

Mini USB Connector, J5

The COM-3505 is a USB device with a mini type AB connector. (G = GND)

Baseband Connector J3

98-pin Female Connector.

I/O Compatibility List

(not an exhaustive list)

I/O
COM-1700-A Low-power compact development
Platform FPGA + ARM + DACs + ADCs + VGA + GbE
LAN + USB2+ NAND + TCXO + RS422. Option –A.
COM-1705 Low-power compact PSK modem + Viterbi
Convolutional FEC + IP router
<u>COM-3504</u> Dual Analog <-> Digital Conversions
[using 98-pin – 40 pin adapter COM-9109]
COM-1200 FPGA/VHDL development platform Xilinx
Spartan3-1000 & Analog front-end.
[using 98-pin – 40 pin adapter COM-9109]
COM-2802 Synchronized 8-channel 900 MSamples/s

Digital-to-Analog conversion [for 2-channel transmit-only assembly]

ComBlock Ordering Information

COM-3505 Dual-Band 2.4/5 GHz 2x2 MIMO Transceiver

ECCN: 5A991.b.1

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com