
COM-4009 DIGITAL TO [400 MHz – 4.4 GHz] BROADBAND RF MODULATOR

Key Features

- Broadband quadrature modulator, including DACs, agile frequency synthesizer, quadrature RF modulator and output power detector.
- Software tunable in the range 400 MHz 4.4GHz by steps of 5 KHz or less. Customizable output harmonics rejection filter on request.
- Dual 12-bit 500 Msamples/s DACs. LVDS digital input for direct connection with FPGA module.
- Wideband modulation bandwidth > 200 MHz
- Built-in output power detector and temperature sensor.
- 8 preset frequencies for fast (200µs) frequency hopping.
- Internal 2.5ppm TCXO frequency reference (before calibration), or external 10 MHz frequency reference.
- USB Monitoring & Control Interface
- Single $+5V_{DC}$ supply.
- Connectorized 3"x 3" module for ease of prototyping
- SMA output connector
- RS232 (3tx/5rx) and RS422 (4rx) drivers

For the latest data sheet, please refer to the **ComBlock** web site: <u>comblock.com/com4009.html</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

(shown without shield)

Electrical Interface

Inputs / Outputs

Input Module	Definition
Interface	
D(0:31)	16 differential pairs, LVDS input. The 4 least-significant bits D(0:7) are unused. I and Q samples are alternating: I is
	sent first after the rising edge of the clock, Q is sent at the following edge. Format: 2's complement
DCI(0:1)	I/Q selector, LVDS input. '1' to indicate that the I sample is currently sent on the data bus D, '0' while the Q sample is sent.
CLKREF(0:1)	DAC sampling clock. LVDS input. Maximum frequency: 500 MHz.
DCO(0:1)	DAC sampling clock output, LVDS. A delayed version of CLKREF generated by the dual DAC.
EXT_REF	Optional input. External 10 MHz frequency reference for frequency synthesis. Sinewave, clipped sinewave or squarewave. J8 SMA male connector. 50 Ohm. Input is AC coupled. Minimum level 0.6Vpp. Maximum level: 3.3Vpp.

Analog	Definition		
Output			
Signals			
RF_OUT	Modulated RF outputs.		
	400 MHz – 4.4GHz		
	Maximum output level: +4 dBm.		
	Impedance: 50 Ohms.		
	SMA female connector		
Control	Definition		
Lines			
PDN	Power down input. Active low. As this		
	control signal is slow to enact, it can		
	rarely be used to switch off RF output in		
	bursts application. In this case, use the fast		
	TX_EN control instead.		
	Connector J5 Pin A1.		
TX_EN	Low-voltage TTL input control.		
	Used to turn all outputs on/off.		
	Level signal: $3.3V = ON$, $0V = OFF$		
	Response time 200 µsec		
	On/Off rejection > 83 dB.		
	Connector J5 Pin A2.		
	Pulled high by default.		
FREQ_HOP	Low-voltage (3.3V / 0V) TTL input		
	control. Pulled low by default.		
	A short '1' pulse will cause the COM-		
	4009 to jump to the next frequency by		
	incrementing the modulo- N _{freq} frequency		
	pointer (where N _{freq} is defined in control		
	Register 35)		
	RF frequency 0 ->		
	RF frequency 1 ->		
	RF frequency 2 ->		
	RF frequency $0 > $ etc		
	Rising-edge triggered.		
	Minimum pulse width: 10 µsec.		
	The signal must be returned to zero as		
	soon as possible as it impedes the		
	module's communication ability.		
	Connector J5 Pin A3.		
USB	Mini-USB connector (type AB);		
Monitoring	Full speed / Low Speed		
& Control			
Power	4.9 – 5.5VDC. Terminal block. Power		
Interface	consumption is 400mA.		
munuu			

Absolute Maximum Ratings

Supply voltage	-12V min,
	+5.8V max
12-pin connector digital inputs	-0.3V min, +5.0V max
EXT_REF	-0.3V min, +3.6V max

Configuration

Complete ComBlock assemblies can be monitored and controlled centrally over a single USB connection using the **ComBlock Control Center** software. A mini USB cable is supplied.

The COM-4009 can also be monitored and controlled through adjacent ComBlocks using LAN/TCP-IP, USB, Serial or CardBus connection.

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-4009 is to use the ComBlock Control Center software supplied with the module(s). In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-4009 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

COM4009 [400 MHz - 4.4 GHz] Broadban	d RF Modulator Basic Settings X			
Frequency Selection				
Frequency Selection: 1 RF frequency: 2175000000 Hz				
Stored Frequencies				
Frequency 0: 925000000 Hz	Frequency 1: 2175000000 Hz			
Frequency 2: 100000000 Hz	Frequency 3: 1200000000 Hz			
Frequency 4: 1500000000 Hz	Frequency 5: 1800000000 Hz			
Frequency 6: 200000000 Hz	Frequency 7: 0 Hz			
Level				
Output level: 1023	Modulator On			
External controls				
External Trigger	Number of Frequency Hopping Steps: 8			
Restore Default Apply	Ok Advan Cancel			

Up to eight frequencies can be stored within each module at any given time. The current frequency is selected by an index in the range 0 to 7. Frequencies must be integer multiples of the RF

synthesizer step size.

A basic frequency hopping scheme can be enabled by

(a) enabling the external trigger

(b) entering the number of frequency hopping steps in the round-robin arrangement.For example, by specifying 4 steps, the modulator

center frequency will follow the following index sequence: 0,1,2,3,0,1,2,3,0,1, etc., the index being incremented at the rising edge of each external FREQ_HOP pulse.

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

Programmers developing custom applications (using the <u>ComBlock API</u> instead of the supplied ComBlock control center graphical user interface) should know that frequency changes are enacted upon (re-)writing to the REG6

Parameters	Configuration	
RF frequency 0	Preselected frequency 0.	
	Range 400 MHz – 4.4GHz,	
	expressed in Hz.	
	REG0 (LSB) – REG3 (MSB)	
Output level	10-bit control.	
	Dynamic range:	
	41.8 dB @ 400 MHz (typ.)	
	40 dB @ 0.5GHz (typ.)	
	33.3 dB @ 1GHz (typ.)	
	27.5 dB @ 2GHz (typ.)	
	26.5 dB @ 3GHz (typ.)	
	REG4 LSB	
	REG5(1:0) MSB	
Modulator on/off	0 = OFF, 1 = ON	
	Another method to turn all	
	modulators on/off simultaneously	
	is to use the TX_EN external	
	control on the J5 connector.	
	$\mathbf{DEC}(5(7))$	
External controls	REG5(7)	
enabled/disabled	Enable or disable the PDN,	
chaoled/disabled	FREQ_HOP and TX_EN	
	external controls on the J5	
	connector.	
	0 = external controls disabled	
	1 = external controls enabled	
Engage av14'	REG6(0)	
Frequency selection	Use to switch local oscillator	
	frequency among preselected	
	values.	
	Note: the external FREQ_HOP	
	control may override this	
	selection.	

	Range 0 through 7
	REG6(7:5)
RF frequency 1	Preselected frequency 1.
	Same format as RF frequency 0.
	REG7(LSB) – REG10(MSB)
RF frequency 2	Preselected frequency 2.
	Same format as RF frequency 0.
	REG11(LSB) – REG14(MSB)
RF frequency 3	Preselected frequency 3.
	Same format as RF frequency 0.
	REG15(LSB) – REG18(MSB)
RF frequency 4	Preselected frequency 4.
	Same format as RF frequency 0.
	REG19(LSB) – REG22(MSB)
RF frequency 5	Preselected frequency 5.
	Same format as RF frequency 0.
	REG23(LSB) – REG26(MSB)
RF frequency 6	Preselected frequency 6.
	Same format as RF frequency 0.
	REG27(LSB) – REG30(MSB)
RF frequency 7	Preselected frequency 7.
	Same format as RF frequency 0.
	REG31(LSB) – REG34(MSB)
Number of RF	Each time a FREQ HOP pulse
frequencies Nfreq in	is received, the frequency pointer
the scanning list	increments modulo Nfreq.
	Nfreq is in the range $1 - 8$.
	REG35(3:0)
RS232 driver enable	Set to zero to save power when
	the application does not use the
	RS232 signals.
	0 = disabled
	1 = enabled
	REG6(1)
RS422 driver enable	Set to zero to save power when
	the application does not use the
	RS422 signals.
	0 = disabled
	1 = enabled
	REG6(2)

Status Registers

Parameters	Monitoring	
Power supply	Returns 3F or 3B when all internal	
faults	supply voltages are within nominal	
	range.	
	SREG0(5:0)	
PLL lock status	A persistent '1' indicates that the	
	frequency synthesizer is locked to the	
	frequency reference.	
	SREG1(0)	
Power	10-bit number. The higher the number,	
measurement	the lower the power. The power	
	measurement linearity is shown below.	
	SREG2(7:0): bits 7-0 (LSB)	
	SREG3(1:0): bits 9-8 (MSB)	
Temperature	Temperature (°C) measured at the	
measurement		

modulator integrated circuit. 10-bit number.
SREG4(7:0): bits 7-0 (LSB) SREG5(1:0): bits 9-8 (MSB)

Test Points

Test points are provided for easy access by an oscilloscope probe.

osemoscope probe.		
Test Point	Definition	
CLK_REF	Internal 19.2 MHz VCTCXO / External	
(TP2)	10 MHz frequency reference clock,	
	depending on the module configuration	
	selected at the time of order.	
PLL_LOCK	Frequency synthesizer PLL lock status.	
(TP1)	Active high: '1' when locked. This	
	information is also available in status	
	register SREG1	

Operations

Internal vs External Frequency Reference

An internal VC-TXCO provides a ± 2.5 ppm temperature-stable 19.2 MHz frequency reference to the RF frequency synthesizer. In addition, small calibration adjustments are possible through the trimming potentiometer R64.

If the internal TCXO stability is not sufficient for the target application, the RF frequency synthesizers can be driven by an external 10 MHz higher-stability frequency reference. The external frequency reference selection requires moving a surface mount resistor from R55 to R54. Please let us know at the time of order if an external frequency reference is preferred.

When configured for external 10 MHz frequency reference, the COM-4009 will automatically select between external 10 MHz (when present) and internal 10 MHz. However, the internal 10 MHz crystal oscillator stability is only about 10 ppm.

Tuning Step Size

The frequency translation is user programmable in the range of 400 MHz to 4.4 GHz. The step size depends on the selected frequency as listed below:

Tuning frequency	Step size	
2.2 to 4.4 GHz	5 KHz	
1.1 to 2.2 GHz	2.5 KHz	
550 MHz to 1.1 GHz 1.25 KHz		
275 MHz to 550 MHz 625 Hz		
137.5 MHz to 275 MHz	312.5 Hz	
68.75 MHz to 137.5 MHz	156.25 Hz	

Minimum Frequency

The COM-4009 is capable of tuning in the range 68.75 MHz to 4.4 GHz. However, the sideband suppression is quite poor when operated below the specified 400 MHz lower limit. See the specifications for the ADL5375 quadrature modulator for more details

http://www.analog.com/media/en/technicaldocumentation/evaluationdocumentation/ADL5375.pdf

Input level

The recommended maximum digital input level is – 16K to +16K, that is half of the full 16-bit signed range. No damage will occur while using the full 16-bit range, but linearity will be affected.

Gain / Output Level Calibration

The COM-4009 output level is controlled by software.

To assist the user in calibrating the output levels, power measurements are displayed in the status panel.

Red LED

A red led will normally turn on for two seconds at power up. It will also turn on when one or more fault condition occurs:

- Power supply out of range
- RF synthesizer out of lock

Performance

Internal Clock Reference

The internal VCTCXO frequency reference performance is as follows:

- temperature stability (-30°C to +75°C): ± 2.5 ppm max
- aging: ±1ppm max/year

The design includes a trimmer potentiometer R64 to remove fixed known offsets through calibration.

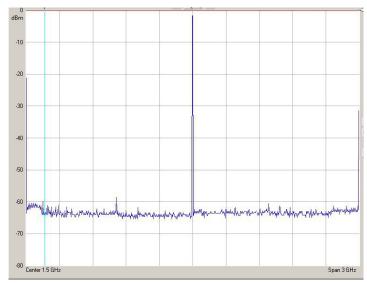
Modulation

Quadrature phase error: 1.7 deg typ (@450 MHz) Quadrature phase error: < 0.4 deg typ above 900 MHz I/Q amplitude balance error: < 0.1 dB

ON/OFF rejection (using modulator on/off command only): > 85 dB typ.

Dynamic range -30.5 to 11.3 dBm @ 400 MHz -29.5 to 10.5 dBm @ 500 MHz -25.5 to 7.8 dBm @ 1 GHz -21.5 to 6 dBm @ 2 GHz -23 to 3.5 dBm @ 3 GHz

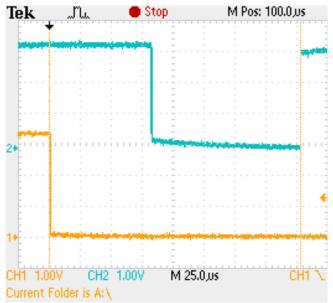
LO leakage (Carrier feedthrough) at output, (0 dBm output)


-60 dBc @ 400 MHz, typ. -66 dBc @ 500 MHz, typ. -53 dBc @ 1 GHz, typ. -43 dBc @ 2 GHz, typ. -34 dBc @ 3 GHz, typ.

Sideband suppression:

-14 dBc @ 400 MHz, typ. -21 dBc @ 500 MHz, typ. -32 dBc @ 1 GHz, typ. -65 dBc @ 2 GHz, typ. -37 dBc @ 3 GHz, typ.

Modulation bandwidth:


±50 MHz @0.1dB ±500 MHz @1dB ±600 MHz @2dB ±700 MHz @3dB Out-of-band spurious spectral lines: < -60 dBc

Output spectrum 0 - 3GHz. 10 KHz resolution bandwidth. 1.5 GHz modulated output (0 dBm).

Frequency Synthesizer

LO frequency switching time using the FREQ_HOP signal: $203 \mu s$

Frequency hop using the FREQ_HOP signal Yellow trace: FREQ_HOP control signal Blue trace: RF synthesizer lock status

Phase noise @ 400 MHz < -94 dBc/Hz @ 1 KHz < -93 dBc/Hz @ 10 KHz < -103 dBc/Hz @ 100 KHz Phase noise @ 2.28 GHz < -87 dBc/Hz @ 1 KHz < -84 dBc/Hz @ 10 KHz < -95 dBc/Hz @ 100 KHz Phase noise @ 3 GHz < -82 dBc/Hz @ 1 KHz < -86 dBc/Hz @ 10 KHz < -92 dBc/Hz @ 100 KHz Above phase noise measured using the 19.2 MHz

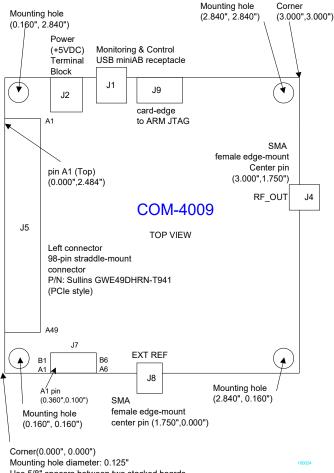
VCTCXO internal frequency reference. Similar phase noise performance are obtained with internal and external 10 MHz frequency references.

For best phase noise, the DAC sampling frequency should be selected at least 100KHz away from integer multiples of the reference frequency (19.2 or 10 MHz).

Harmonics

Users should be aware of the strong odd harmonics. Harmonics at three, five, seven times the modulator frequency are typically in the range of -10 to -20 dBc. Depending on the application, these harmonics may fall in the band of interest and external filtering may be required.

At the time of order, please specify the maximum output frequency. We will install the appropriate harmonics rejection filter accordingly.


Power measurement

Accuracy (no correction, unmodulated CW carrier): $\pm 0.5 \text{ dB}$ Video bandwidth: 3.5 MHz

Schematic

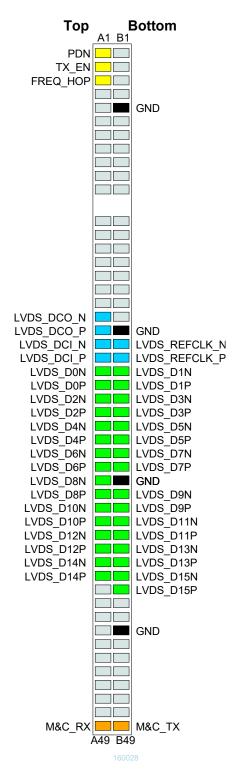
The board schematic is available on-line at comblock.com/download/com_4009schematics.pdf

Mechanical Interface

Use 5/8" spacers between two stacked boards Board thickness 0.062"

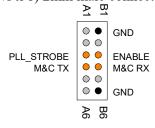
Pinout

Mini USB Connector J1


The COM-4009 is a USB device with a mini type AB connector. (G = GND)

	V D] [][- D] [][+ I] [][D (] [][
-	2	3	4	5	

Input Connector J5


98-pin Female Connector.

This module is designed for direct connection to the COM-18xx modules.

Connector J8

12-pin (2 rows x 6) 2mm male connector.

I/O Compatibility List

(not an exhaustive list)
Input
<u>COM-1800</u> FPGA + GbE LAN development platform
COM-1806 Wideband signal capture & playback
COM-1827 CPM (FSK,MSK,etc) modem

ComBlock Ordering Information

COM-4009 DIGITAL TO [400 MHz – 4.4 GHz] BROADBAND QUADRATURE MODULATOR

At the time of order, please specify:

- the maximum output frequency. We will install the appropriate harmonics rejection filter accordingly.
- Reference clock configuration: internal TCXO or 10 MHz

ECCN: 5A991.b

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com