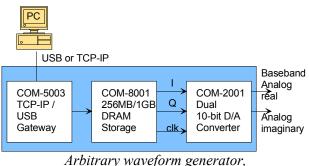


Key Features

- Generic gateway for LAN/TCP-IP, USB • and LVTTL clock synchronous interfaces.
- Provides ComBlock assemblies with • standard TCP-IP network connectivity and direct USB connection to host computer for both high-speed payload data transfer and monitoring and control.
- **TCP-IP** interface:
 - Role: TCP-IP server, Awaits 0 remote client(s) connection.
 - Supports 3 bidirectional 0 connections.
 - 0 Maximum sustained throughput 53 Mbits/s (100Base-Tx). Actual speed depends on host computer.
 - 0 Standard 100Base-Tx/10Base-T, RJ-45 connector. Autonegotiation or manual settings: 10/100 Mbit/s
- USB 2.0 interface:
 - Role: USB client.
 - Supports 2 bidirectional 0 connections.
 - Maximum sustained throughput 85 0 Mbits/s (USB 2.0 High-Speed). Actual speed depends on host computer.
- Serial HDLC for interface between byte-• wise asynchronous connections (USB, TCP-IP) and bit-serial fixed data rate connections. Support for two virtual channels when using TCP-IP.
- 16Kbits Elastic buffering and flow-control • on each transmit and receive link
- Single 5V supply. Standard 40 pin 2mm ٠ dual row connectors (right, left)

COM-5003 TCP-IP / USB GATEWAY


For the latest data sheet, please refer to the **ComBlock** web site: www.comblock.com/download/com5003.pdf. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to www.comblock.com/product list.htm.

Typical Applications

Arbitrary Waveform Signal Generation

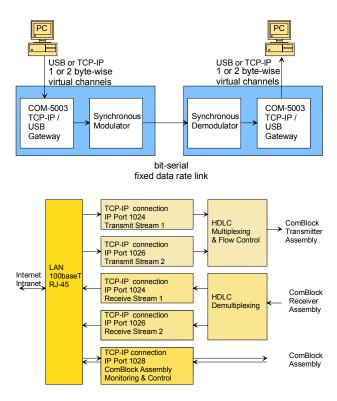
Files representing binary or analog sampled signals can be uploaded through the COM-5003 to the COM-8001 SDRAM memory over the network, then played back at the selected speed. Various ComBlocks can be used to generate analog signals at baseband, 70 MHz intermediate frequency or radio-frequency.

analog baseband example

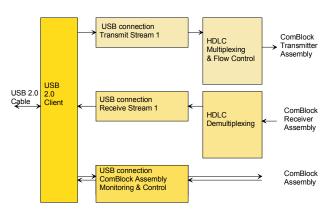
LAN / USB to Synchronous Link Interface

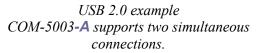
The COM-5003 can be used as a bridge between a variable data rate (asynchronous) connection such as TCP-IP or USB and a fixed data rate (synchronous) connection like satellite / wireless or cable link.

An HDLC protocol is used over the synchronous link to multiplex multiple data streams over a single link, in effect creating virtual channels. In this module, two virtual channels are implemented in each direction to convey stream 1 and stream 2. Stream 1 is given priority over stream 2.


Whenever no data is available for transmission, the HDLC encoder generates empty frames to fill the synchronous data link. Empty frames are discarded during HDLC decoding.

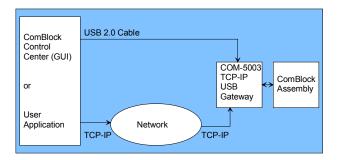
Note: The COM-5003 differs from a conventional router¹ in several ways:


(a) the TCP and IP protocols are decoded on the transmit side before transmission. Only


the data contents is transmitted. No network information is sent.

- (b) Propagation delay over the synchronous link does not affect the TCP-IP throughput as the TCP-IP protocol is used only locally on the transmit and receive sides.
- (c) The COM-5003 is perfectly suited for use in a broadcast network.

LAN TCP-IP example COM-5003-B supports three simultaneous connections.



¹ See also $\underline{\text{COM-5004}}$ IP Router.

ComBlock Assembly Monitoring & Control via LAN and/or USB

ComBlock assemblies can be remotely monitored and controlled by a host computer. The COM-5003 extend the selection of communication types to include both TCP-IP and USB.

When using TCP-IP, ComBlock assemblies can be controlled over an internet or intranet network. USB's simple plug&play direct connection to a host computer can be easier as no network configuration is needed. Both USB and TCP-IP are supported by the <u>ComBlock Control Center</u> graphical user interface, so no programming is needed. Several ComBlock assemblies can be monitored and controlled simultaneously from the same computer.

Interfaces

Input Signals	Definition				
DATA_IN[7:0]	Input signal. The input width				
	is can be 1-bit or 8-bit under				
	user control. See control				
	register <u>REG20</u> . Signals are				
	pulled-down. LVTTL 0 – 3.3V				
SAMPLE_CLK_IN	Input signal sampling clock.				
	One CLK_IN-wide pulse.				
	Read the input signal at the				
	rising edge of CLK_IN when				
	$SAMPLE_CLK_IN = '1'.$				
	Samples can be consecutive.				
	For example,				
	SAMPLE_CLK_IN can be				
	fixed at '1' to indicate that				
	new input samples are				
	provided once per CLK_IN				
	clock period.				
	Signal is pulled-up.				
	LVTTL 0 – 3.3V				
SAMPLE_CLK_IN_REQ	Input flow control signal				
	(output). '1' indicates that the				
	COM-5003 is ready to accept				
	DATA_IN input samples into				
	its input elastic buffer. LVTTL				
	0 - 3.3V. Signal is pulled-				
	down.				

CLK_IN	Input reference clock for synchronous I/O. DATA_IN and SAMPLE_CLK_IN are read at the rising edge of CLK_IN. Maximum frequency: 40 MHz. LVTTL 0 - 3.3V
--------	---

Output Signals	Definition
DATA_OUT[7:0]	LVTTL $0 - 3.3V$ output
	signal. The output width is
	can be 1-bit or 8-bit under
	user control. See control
	register <u>REG21</u>
SAMPLE_CLK_OUT	LVTTL $0 - 3.3V$ output
	signal sampling clock. One
	CLK_OUT-wide pulse.
	Read the output signal at the
	rising edge of CLK_OUT
	when SAMPLE_CLK_OUT
	= '1'.
SAMPLE_CLK_OUT_REQ	Output flow control signal
	(input). '1' asks the COM-
	5003 to send DATA_OUT
	output data to the next
	module. LVTTL $0 - 3.3V$.
	Signal is pulled-up.
CLK_OUT	LVTTL 0 – 3.3V 40 MHz
	output reference clock.
	(from internal oscillator).
EXT_TRIGGER_OUT	25 ns pulse triggered by
	software command. See
	command register <u>REG22</u> .
	Helpful in triggering events
	such as COM-8001 start of
	data acquisition. LVTTL 0 –
	3.3V

Other	Definition					
Interfaces						
LAN	4 wire. 10Base-T/100Base-TX. RJ45					
	connector. NIC wiring. Use standard					
	category 5 cable for connection to a Hub.					
	Use crossover cable for connection to a					
	host computer.					
USB	USB 2.0					
	Use USB 2.0 approved cable for					
	connection to a host computer. Maximum					
	recommended cable length is 3'.					
Power	4.75 – 5.25VDC. Terminal block. Power					
Interface	consumption is typically 450mA.					

Initial Configuration

The static <u>IP address</u> must first be configured over USB or through adjacent ComBlocks. This network setting is saved in non-volatile memory. Once the correct network setting is configured, the Comblock Control Center and this ComBlock assembly can communicate over the intranet or internet.

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

- TCP-IP/LAN
- USB

or connections via adjacent ComBlocks:

- USB
- TCP-IP/LAN
- Asynchronous serial (DB9)
- PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-5003 is to use the **ComBlock Control Center** software supplied with the module on CD.

Start the ComBlock Control Center, click on the *Communication parameters setup* button is and select USB or LAN/IP as the primary communication channel. In the latter case, enter the COM-5003 static IP address.

Communication Setup				
0	Com Port			
	LAN/IP			
۲	IP-address: 172_16_1_130 Ping Test			
0	USB			
0	CardBus			
	Ok Cancel			

Then detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-5003 module to be configured, next click the *Settings* button to display the *Settings* window shown below:

🔁 ComBlock Control Center				
File Operations Functions Help				
× • • • • • • • • • • • • • • • • • • •				
COM5003 TCP-IP / USB GATEWAY				
TCP-IP / USB GATEWAY Basic Settings				
IP-address: 172 16 1 130 Input Format: 8-bit wide from J5				
Output Format:				
Apply Ok Advanced Cancel				

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

Parameters	Configuration
IP address	4-byte IP address. Example : 0x AC 10 01 80 designates address 172.16.1.128 The new address becomes effective immediately (no need to reset the ComBlock). REG0: MSB REG1 REG2 REG3: LSB
Reserved	REG4-19 Reserved for other network configurations. No need to write any data.
Input selection	00000 = J5 connector is disabled
	00001 = 1-bit serial input from J5 ¹
	01000 = 8-bit parallel input from J5
	10001 = 1-bit serial input from J8 connector (bi-directional I/O)
	11101 = test mode: loopback for 1-bit serial HDLC-encoded stream. J5 input is disabled.
	11110 = test mode. Internally generated 8-bit wide periodic counting sequence (0-255) as input. J5 input is disabled. Useful in testing the throughput of the TCP-IP or USB data link.
	REG20 bits 4-0
Bypass descrambling	V.34 descrambling of the bit-serial stream is implemented prior to HDLC decoding. This command is ineffective then HDLC decoding is disabled. 0 = descrambling enabled 1 = bypass the descrambling. REG20 bit 6
Receive HDLC	Perform HDLC decoding on 1-bit serial

¹ Enabling the bit-wise HDLC is strongly advised to preserve the bit to byte alignment information during bit-serial transmission.

1.1	· / · · · · · · · · ·
enable	receive stream (applicable only when 1- bit input serial format is selected above). 0 = no 1 = yes REG20 bit 7
Output	00000 - 18 connector is dischied
selection	00000 = J8 connector is disabled.
	$00001 = 1$ -bit serial output to $J8^1$
	01000 = 8-bit parallel output to J8
	10001 = 1-bit serial output to J5 (bi- directional I/O)
	11111 = special case: 1-bit serial output to COM-7001 FEC encoder through J8.
	REG21 bits 4-0
Bypass scrambling	V.34 scrambling of the bit-serial stream is implemented after HDLC encoding. This control is ineffective when HDLC is disabled. 0 = scrambling enabled
	1 = bypass the scrambling stage.
Transmit	REG21 bit 6 Perform HDLC encoding on 1-bit serial
HDLC enable	receive stream (applicable only when 1- bit output serial format is selected above). When no data is available from the selected source(s), the HDLC engine sends empty frames 7E 7E. Use HDLC encoding to multiplex two streams on the synchronous physical link.
	When HDLC is disabled, the data source must be ready to fill the IP port 1024 or USB connection in order to avoid any underflow condition in the transmit elastic buffers.
	0 = no HDLC 1 = HDLC enabled. REG21 bit 7
COM-8001 external trigger	Special use: Writing to REG22 with a '1' in bit 1 will generate a 1 CLK wide
	pulse on pin J8/B6. The main application is to trigger the COM-8001 file playback/download. There is no need to reset this bit to '0' prior to writing a '1'.
	REG22 bit 1.
10Base-T / 100Base-TX	00 = 10Base-T $01 = 100Base-TX$
LAN selection	10 = Auto negotiation Changes will take effect at the next
	power up. REG22 bits 3-2
Half/Full	Half-duplex is a safe configuration
duplex	which can be used with older
	networking equipment. Full duplex

results in higher throughput but may be
incompatible with unswitched hubs.
0 = half-duplex
1 = full duplex.
Changes will take effect at the next
power up. REG22 bit 4

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and

imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Monitoring

Monitoring registers are read-only.

D (
Parameters	Monitoring					
TCP-IP	Monitors the TCP-IP connections for all					
connection	three ports supported.					
	1 = connected, 0 otherwise.					
	SREG0 bit 0 port 1024 data stream 1					
	SREG0 bit 1 port 1026 data stream 2					
	SREG0 bit 2 port 1028 M&C					
HDLC	'1' when an HDLC transmit elastic buffer					
transmit	is empty, 0 when data transmission is					
elastic	pending.					
buffers	SREG0 bit 3: stream 1					
empty	SREG0 bit 4: stream 2					
HDLC	'1' when an HDLC receive elastic buffer					
receive	is more than ³ / ₄ full, '0' otherwise.					
elastic	SREG0 bit 5: stream 1					
buffer 3⁄4	SREG0 bit 6: stream 2					
full						
Number of	Total number of payload data bytes					
transmitted	received from LAN or USB and					
bytes (USB	forwarded to an external digital device					
or LAN)	(excludes monitoring & control					
	messages, includes all virtual data					
	streams). 32-bit byte count. Counter rolls					
	over when reaching 0xFFFFFFFF.					
	SREG1: bits 7-0 (LSB)					
	SREG2: bits 15-8					
	SREG3: bits 23-16					
	SREG4: bits 31-24 (MSB)					
Number of	Total number of payload data bytes					
received	received from an external digital device					
bytes (USB	and forwarded to LAN / USB (excludes					
or LAN)	monitoring & control messages, includes					
	all data virtual streams). 32-bit byte					
	count. Counter rolls over when reaching					
	0xFFFFFFFFF					
	SREG5: bits 7-0 (LSB)					
	SREG6: bits 15-8					
	SREG7: bits 23-16					
	SREG8: bits 31-24 (MSB)					
MAC address	Unique 48-bit hardware address (802.3).					
	In the form					
	SREG9:SREG10:SREG11::SREG14					
L	SKEU9.SKEU10.SKEU11SKEU14					

As the monitoring data is constantly changing, it is important to be able to prevent changes while reading a multi-byte parameter. The monitoring data is latched upon reading register 0. Therefore, register 0should always be read first.

Test Points

Test points are provided for easy access by an oscilloscope probe. The main focus of these test points is to help monitor proper flow control operation.

Test	Definition			
Point				
TP 1	TCP-IP connection on port 1024 (stream 1)			
	1 = connected, 0 otherwise			
TP 2	TCP-IP connection on port 1026 (stream 2)			
	1 = connected, 0 otherwise			
TP 3	TCP-IP connection on port 1028 (Monitoring &			
	Control)			
	1 = connected, 0 otherwise			
TP 4	Stream 1 HDLC transmit elastic buffer empty			
	1 = empty, 0 otherwise			
TP 5	Stream 2 HDLC transmit elastic buffer empty			
	1 = empty, 0 otherwise			
TP 6	Stream 1 HDLC receive elastic buffer ³ / ₄ full			
	$1 = \frac{3}{4}$ full, 0 otherwise			
TP 7	Stream 2 HDLC receive elastic buffer ³ / ₄ full			
	$1 = \frac{3}{4}$ full, 0 otherwise			
TP 8	HDLC flag 7E detected at input			
TP 9	CRC error detected on channel 1 HDLC frame.			
	1 = error detected at end of frame, 0 = no error			
TP 10	CRC error detected on channel 2 HDLC frame.			
	1 = error detected at end of frame, 0 = no error			
INIT#	Internal processing clock divided by 8.			
	5 MHz square wave.			
DONE	1 when the FPGA is loaded with a valid .mcs			
	configuration file (typically 0.4 seconds after power			
	up).			

Operation

Concept

The COM-5003 converts a TCP-IP socket stream or a USB stream into a simple clock-synchronous data stream and vice versa.

Using TCP-IP:

On the transmit side, the COM-5003 decodes the TCP-IP protocol and extracts the data from the network client. TCP, IP and Network information, and in particular routing information, are <u>not</u> transmitted from one end to the other.

At the receiving end, the network client must first connect to the COM-5003 to receive data.

The COM-5003 maintains the flow-control information between the TCP-IP socket and the input/output interfaces. For example, if the COM-5003 is connected to a COM-1001 QPSK modulator configured for 1 Mbit/s data throughput, the network client (i.e. data source) will be asked for 1 Mbit/s throughput over the TCP-IP link.

Using USB:

USB and TCP-IP can be used interchangeably and independently at the transmit-end or receive-end. For example, the user can select TCP-IP on the transmit side while using USB on the receiving end.

The main functional difference is that the COM-5003 USB interface supports only one bi-directional stream whereas the TCP-IP interface supports two streams.

Connectivity

As a gateway, the COM-5003 interconnects TCP-IP, USB and clock synchronous LVTTL interfaces. Some connections are configured by control registers (see <u>configuration registers</u>), while others are configured by selecting an FPGA option, as described below.

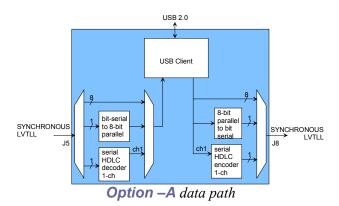
To select the **-A** or **-B** option, please follow the three steps:

Step 1: from the ComBlock Control Center graphical user interface, enumerate the ComBlocks, highlight the COM-5003 and open the personalities windows by clicking on the swiss army knife button.

Step 2: pull-down the personalities index and select index 2 for option **–A** or 3 for option **–B**.

Step 3: push the "Set Default" button.

	ComBlock Control Cent						
File	e Operatio	ons Function	р Н				
×	s 💊 🖻	1 🐝 🖸					
_						_	
C	OM50	03 TCP-	-IP / U	JSB G	ATEWA	Y	
L.	COM500	3 TCP-IP /	USB GAT	EWAY			
	Personalit	ties					
	Index	Personality	Option	Default	Authorized	Boot Prot	
	1	1400	в		Yes	No	
	2	5003	A		Yes	No	
	3	5003	в	D	Yes	No	
	4	0000	в		Yes 🌔	No	
	5	0000	в		Yes 5	No	
	6	0000	в		Yes 💛	No	
	7	0000	В		Yes	No	
	Add/Remove/Modify Personality						
	Index	Personality	Option	Password	ı 🤸		
	2 5003 B Set Default						
	Close						
•							

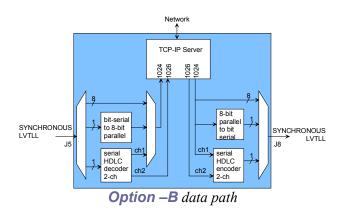

It takes 0.4 seconds to switch between options under user control.

Option –A

Monitoring and Control is performed through either TCP-IP (IP port 1028) or USB, at the user's discretion.

A single high-speed bi-directional data channel is supported through USB.

The user can select several formats (8-bit parallel mode, 1-bit serial with HDLC, 1-bit serial without HDLC) at the input and output connectors through control registers.



Option –B

All communications are established exclusively through the TCP-IP server. The USB Client is disabled.

The TCP-IP server supports three simultaneous connections: 2 high-speed bi-directional data channels and one bi-directional monitoring and control channel.

The user can select several formats (8-bit parallel mode, 1-bit serial with HDLC, 1-bit serial without HDLC) at the input and output connectors through control registers.

Format Conversion

Parallel to serial conversion occurs at the output when a 8-bit byte received over the TCP-IP or USB link is converted to one-bit serial when so configured by the user. The key rule for parallel to serial conversion is that the most significant bit (MSb) is transmitted first.

Likewise, in the serial-to-parallel conversion which may be implemented at the input, the first received bit is placed at the MSb position in the byte.

Serial HDLC

A bit-serial HDLC format can be used to convey data over a synchronous serial link such as a wireless or satellite link. The HDLC objective is three-fold:

- (a) Tell the receiver side when no information is available for transmission.
- (b) Implement multiple virtual channels over a common physical link.
- (c) Recover the original bit-to-byte alignment of the original USB or TCP-IP connection at the receiving end.

HDLC can be enabled or disabled under user control. See control registers <u>REG21</u> and REG22.

Serial HDLC format

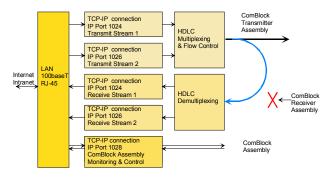
This section provides details as to the serial HDLC format used on the synchronous serial link. It is intended for developers and can be skipped by most users.

78	E	Address Field	Information Field	FCS	7E	
1 byte 1 byte opening flag			variable-length	2 bytes CRC16	1 byte closing flag	

Data is encapsulated within variable length frames starting and ending with a 0x7E flag. A two-byte CRC check can be used to verify if the frame is error free.

The information field always contain an integer number of bytes. The most significant bit is transmitted first. The maximal frame length (before accounting for bit stuffing) is 1024 bytes of information plus 5 bytes of overhead.

The following bit-stuffing mechanism is used on the transmit side for all fields except the opening and closing flags: a '0' is inserted after five consecutive 1's.


The address field is used to indicate the type of data conveyed within:

01: data from IP port 1024 02: data from IP port 1026

Loop Back

A loop back mode is provided for system-level test purposes. Transmitted data are looped back into the 1-bit serial input. The nominal input pins are disabled. However, the nominal output pins are enabled. Be sure to configure the output format as '1 bit serial with HDLC'.

The loopback test mode can be used in conjunction with USB (1 channel) and TCP-IP (2 channels).

Trigger Pulse

Users can remotely generate a short (25ns) pulse to trigger external devices such as the COM-8001 arbitrary waveform generator. The EXT_TRIGGER_OUT pulse is generated on pin J8/B6 upon sending control register <u>REG22</u> with bit 1 set to '1'.

Recovery

The COM-5003 is protected against corruption by an invalid FPGA configuration file or an invalid user configuration. To recover from such occurrence, connect the BOOT pin to the nearby ground pin using a jumper and power-up the COM- 5003. Remove the jumper after 1 second. The COM-5003 will be automatically configured with a boot configuration which restores both USB and LAN/TCP-IP communications. This boot file is unerasable. Once this is done, the user can safely restore the user configuration and/or re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

TCP-IP Interface

IP Ports

While configured in option –B, the COM-5003 acts as a TCP-IP server. As such it opens the following sockets in listening mode:

- Port 1024: transmit and receive data stream 1.
- Port 1026: transmit and receive data stream 2.
- Port 1028: monitoring and control port.

In addition, the COM-5003 opens port 1029 as a UDP port for remote reset.

While configured in option –A, the COM-5003 acts as a TCP-IP server for remote monitoring and control only (port 1028).

TCP-IP Throughput Benchmarks

The COM-5003 is capable of a sustained (average) throughput of 53 Mbits/s over 100base-Tx. In most cases, the sustained throughput is limited by the TCP-IP client computer, the application(s) running on the client computer and the network configuration, as illustrated in the one-way data transfer benchmarks below:

Throughput tests conditions	Throughput (100MB average)
Client: Intel Pentium 4 2.8 GHz running winsock-based console application. Direct cross-over LAN cable. No other application running. COM-5003 configured as 'Auto Negotiation''. 100Base-Tx connection.	53 Mbits/s
Client: AMD Sempron 3000 Direct cross-over LAN cable.	47 Mbits/s
Client: Intel Pentium 4 2.8 GHz over LAN (through two LAN switches)	32 Mbits/s

IP Protocols

This module supports the following IP protocols:

- Ping
- ARP
- TCP-IP

Power Up

The LAN link is available typically 2.1 seconds after power up.

Ping

The module responds to ping requests with size up to 470 bytes. Ping can be used to check the module response over the LAN network. Ping can be used at any time, concurrently with other transmit and receive transactions. For example, on a Windows operating system, open the Command prompt window and type "ping -t -1 470 172.16.1.128" to send pings forever of length 470 bytes to address 172.16.1.128.

UDP-IP

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset all TCP-IP connections gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a server 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-5003 is at a remote location. The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-5003.

TCP-IP connections can also be cleared remotely from the ComBlock Control Center as illustrated below:

	Communication Setup Detect ComBlocks	Help Ctrl+S Ctrl+D Ctrl+E
	Personalities	Ctrl+M
	Status Registers	Ctrl+R
	TCPReset TCP/IP Cor	nnection.
R	TCP <mark>Reset TCP/IP Cor</mark> Reset TCP/IP Connect	
	Reset TCP/IP Connect	
	Reset TCP/IP Connect	ion

Client Programming : TCP-IP

This section is intended to help designers who want to design their own client application. It can be skipped by users of ready-to-use applications such as Hyperterminal, ComBlock Control Center, etc.

In network terminology, the COM-5003 is a server. It awaits connection establishment and connection termination under the initiation of clients. It never initiate any connection establishment or termination.

An example of C-language Winsock programming for Windows OS clients is shown below. More information about Winsock programming can be found at

http://msdn.microsoft.com/library/default.asp?url=/l

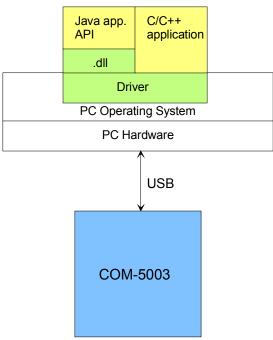
us/winsock/winsock/finished_server_and_client_co de.asp

Be sure to include a reference to the Winsock2 library (WS2_32.lib) in the project release and/or debug settings.

```
#include <stdio.h>
#include "winsock2.h"
void main() {
    // Initialize Winsock.
   WSADATA wsaData;
    int iResult = WSAStartup( MAKEWORD(2,2), &wsaData );
    if ( iResult != NO ERROR )
       printf("Error at WSAStartup()\n");
    // Create a socket.
    SOCKET m socket;
   m socket = socket( AF INET, SOCK STREAM, IPPROTO TCP );
    if ( m socket == INVALID SOCKET ) {
        printf( "Error at socket(): %ld\n", WSAGetLastError() );
        WSACleanup();
       return;
    }
   // Connect to a server.
   sockaddr in clientService;
    clientService.sin family = AF INET;
// insert destination address below
   clientService.sin addr.s addr = inet addr( "172.16.1.128" );
// insert destination port below
   clientService.sin port = htons(1024);
    if ( connect( m socket, (SOCKADDR*) & clientService, sizeof(clientService) ) ==
SOCKET ERROR) {
        printf( "Failed to connect.\n" );
        WSACleanup();
       return;
    }
    // Send and receive data.
    int bytesSent;
    int bytesRecv = SOCKET ERROR;
    char sendbuf[32] = "Client: Sending data.";
    char recvbuf[32] = "";
   bytesSent = send( m_socket, sendbuf, strlen(sendbuf), 0 );
   printf( "Bytes Sent: %ld\n", bytesSent );
   while( bytesRecv == SOCKET ERROR ) {
        bytesRecv = recv( m socket, recvbuf, 32, 0 );
        if ( bytesRecv == 0 || bytesRecv == WSAECONNRESET ) {
            printf( "Connection Closed.\n");
            break;
        if (bytesRecv < 0)
            return;
        printf( "Bytes Recv: %ld\n", bytesRecv );
    }
    return;
```

USB Interface

USB Throughput Benchmarks


The COM-5003 is capable of a sustained (average) throughput of 85 Mbits/s over USB 2.0. In most cases, the sustained throughput is limited by the host computer and the application(s) running on the host computer.

Client Programming : USB 2.0

Software to help developers create USB high-speed communications between the COM-5003 and a host PC is provided. The **USB 2.0 software package** includes the following:

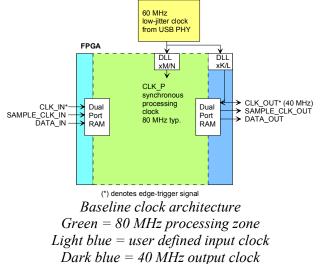
- Windows device driver for XP/2000/Me (.sys, .inf files)
- Java API, .dll and application sample code
- C/C++ application sample code

The USB 2.0 software package is available in the ComBlock CD and can also be downloaded from <u>ComBlock.com/download/usb20.zip</u>. The user manual is available at <u>ComBlock.com/download/USB20_UserManual.pdf</u>

Blue: supplied hardware Green: supplied ready-to-use software Yellow: source code examples

Troubleshooting

LAN problems


Quick checklist:

- is the LAN connection through a Hub or directly to the host PC? In the former case, use a straight LAN cable, in the latter case use a cross-over cable.
- 2) Make sure the +5V power is applied to both submodules, not just the larger one.
- The LAN adapter (the one with the RJ-45 connector) should be plugged in the larger module through the J9 bottom connector, never through J5 or J8.
- The 'DONE' test point should be high (2.5V), otherwise the FPGA is not properly configured. If not, please contact us for assistance.
- 5) Link LED should be ON when the LAN cable is plugged in. Likewise, a LED at the Hub or PC should be ON. If not, the cable could be bad or see points 1 4 above.
- 6) Did you assign a static IP address to the COM-5003? Please see the "Initial configuration" section on page 4.
- 7) Do not assign the same IP address for the COM-5003 and the host computer.
- 8) Is the COM-5003 IP address consistent with the PC address? In general the first 3 numbers of the IP address must match
- If ping does not work, see points 5 − 8 above.

Timing

Clocks

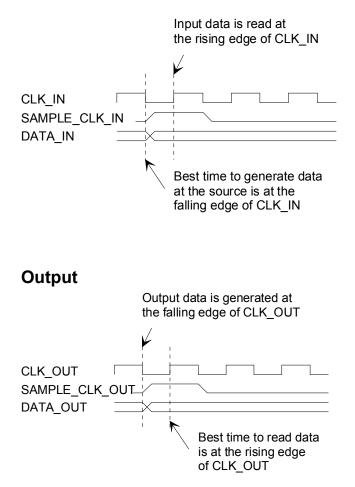
The clock distribution scheme embodied in the COM-5003 is illustrated below.

Input:

The input signals at the J5 connector are synchronous with the CLK_IN clock at J5/A1. This clock can be up to 40 MHz.

A 16Kbit dual-port RAM elastic buffer is used at the boundary between inputs and internal processing area. Thus, the input clock frequency can be independent from the internal processing clock frequency.

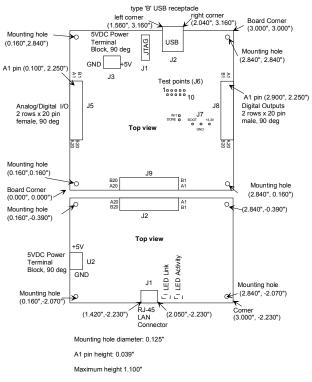
Output:


The 40 MHz output clock CLK_OUT is locked to the internal USB PHY 60 MHz clock by means of a DLL. CLK_OUT is <u>not</u> related in frequency to the external CLK_IN clock.

The output signals are synchronous with the rising edge of the 40 MHz reference clock CLK_OUT (i.e. all signals are stable at the rising edge of the reference clock CLK_OUT).

Internal processing:

The core signal processing performed within the FPGA is synchronous with the 80 MHz processing clock CLK_P. The processing clock is derived from the USB PHY 60 MHz oscillator. CLK_P is not related to the external CLK IN clock.


Input

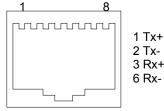
LEDs

2 LEDs located close to the LAN RJ-45 jack provide summary information as to the LAN: Link and activity.

Mechanical Interface

Schematics

The board schematics are available on-line at <u>ComBlock.com/download/com_1400schematics.zip</u> for the main board and <u>ComBlock.com/download/com_5002schematics.zip</u> for the LAN adapter.

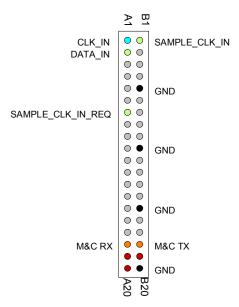

Pinout

USB Connector J2

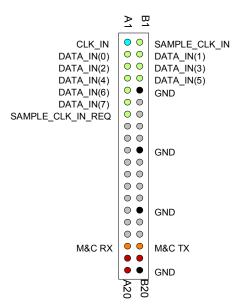
USB type B receptacle.

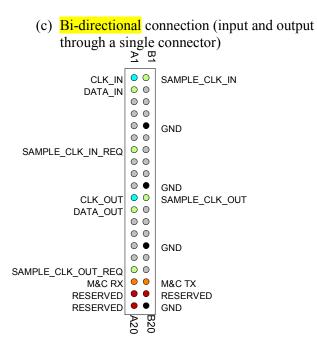
LAN Connector J1

The RJ-45 Jack is wired as a standard PC network interface card. Connection to a LAN Hub is over a straight-through cable.



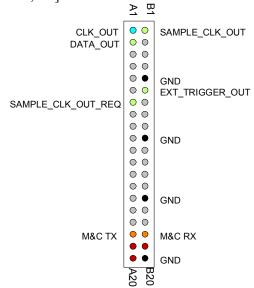
RJ-45 Jack

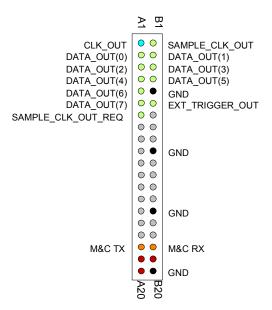

Connector J5


There are several possible connector configurations, depending on the application:

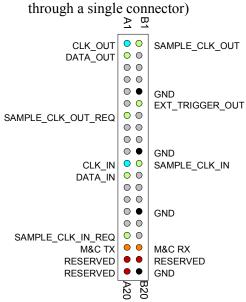
(a) 1-bit wide input from another ComBlock [COM-1009, COM-7001, COM-1202, COM-1418, COM-1027, etc]

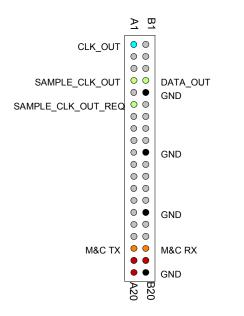
(b) 8-bit wide input from another ComBlock [COM-8002,etc]




Connector J8

There are several possible connector configurations, depending on the application:


(a) 1-bit wide output to another ComBlock [COM-1010, COM-1402, COM-1019, COM-1028, etc]


(b) 8-bit wide output to another ComBlock [COM-8001, etc]

(c) Bi-directional connection (input and output

(d) Special case: 1-bit serial output to a COM-7001 turbo code encoder.

I/O Compatibility List

(not an exhaustive list)

Input Output				
<u>COM-1202</u>	<u>COM-1402</u>			
PSK/QAM/APSK modem	PSK/QAM/APSK			
	modulator			
<u>COM-1418</u> DSSS	<u>COM-1019</u> DSSS			
Demodulator	Modulator			
COM-1027 FSK/MSK	<u>COM-1028</u>			
demodulator	FSK/MSK/GFSK/GMSK			
	modulator			
COM-1009A Viterbi	COM-1010 Convolutional			
decoder K=7	encoder			
COM-8002 Data	COM-8001 Arbitrary			
acquisition module	Waveform Generator			
COM-7002 Turbo code encoder/decoder				
COM-1200/1300/1400 FPGA development platforms				
$\underline{\text{COM-1600/1500}}$ FPGA + ARM development platforms ²				

Configuration Management

This specification is to be used in conjunction with VHDL software revision 8.

ComBlock Ordering Information

COM-5003 TCP-IP / USB Gateway

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com

² 98-pin to 40-pin adapters to interface with other Comblocks are supplied free of charge. Please let us know about your interface requirements at the time of order.