
COM-5402SOFT
IP/TCP SERVER/UDP/ARP/PING STACK for GbE
VHDL SOURCE CODE OVERVIEW

Overview
Gigabit-speed IP protocols like TCP/IP and UDP/IP
can demand a high level of computation on
processors. The trend has been to move the
implementation of these fast but highly repetitive
tasks to a TCP offload engine (TOE) to free the
application processor from frequent interrupts.

The COM-5402SOFT is a generic Internet protocol
stack (including the VHDL source code) designed
to support 1Gbps throughputs on low-cost FPGAs.
It is designed to achieve the maximal throughput
theoretically possible for a given medium.

The following protocols are implemented in
modular VHDL components: TCP server, UDP
frames, ARP and PING. Ancillary components are
also included for streaming, test signal generation
and bit error rate measurement.

These components can be instantiated as needed for
the application. For a TCP-IP server application
(waiting for connections from clients), one must
instantiate packet_parsing.vhd, arp.vhd,
tcp_server.vhd, tcp_tx.vhd and txp_rxbuf.vhd. The
maximum number of concurrent TCP connections
can be adjusted prior to VHDL synthesis depending
on the available FPGA resources.

Wireshark Libpcap network capture files can be
used as receiver input for simulation purposes.

The code is written specifically for IEEE 802.3
Ethernet packet encapsulation (RFC 894), IPv4
protocols.

The code interfaces seamlessly with the
COM-5401SOFT Tri-mode 10/100/1000 Mbps
Ethernet MAC for the MAC / PHY layers
implementation. Code to interface with the Xilinx
Tri-Mode Ethernet MAC (TEMAC) is also
included. More generally, the MAC interface is

generic and simple enough to interface with any
Ethernet MAC component with minimum glue
logic.

The component’s very efficient implementation
makes it suitable for multiple concurrent TCP and
UDP streams instantiations within a small FPGA.

Block Diagram

PACKET
PARSING

ARP
REPLY

PING
REPLY

ARP
REQUEST

ROUTING
TABLE

UDP_RX

TCP
SERVERS

UDP_TX

STREAMS TO
PACKETS

PACKETS TO
STREAMS

TCP_RXBUF

TCP_TXBUF

TCP_TX

APPLICATION
INTERFACE

MAC
INTERFACE

200017

Arbitration
MAC
Transmit
Interface

MAC
Receive
Interface

IGMP

Target Hardware
The code is written in generic VHDL so that it can
be ported to a variety of FPGAs capable of running
at 125 MHz or above. It does not use any Xilinx
primitive.

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2020 Issued 10/2/2020

http://www.mobile-sat.com/

Device Utilization Summary
Device: Xilinx Spartan-6

1 UDP tx, 1 UDP rx,
ARP, Ping, routing
table

Flip Flops 1938
LUTs 2815
RAMB16BWERs 3
DSP48A1s 0
GCLKs 2
DCMs/PLLs 0

1 TCP server, ARP,
Ping

Flip Flops 1745
LUTs 2822
RAMB16BWERs 3
DSP48A1s 0
GCLKs 2
DCMs/PLLs 0

2 TCP servers, ARP,
Ping

Flip Flops 2132
LUTs 3522
RAMB16BWERs 4
DSP48A1s 0
GCLKs 2
DCMs/PLLs 0

Throughput Performance Examples
Test setup1:
1 bidirectional connection between TCP server and
TCP client over Gigabit Ethernet. 120 MHz FPGA
processing clock. Measured sustained throughput:
452 Mbits/s concurrently in each direction.

Test setup2:
512-byte UDP packets sent point-to-point over a
LAN cable. Xilinx Spartan-6 FPGA –2 speed grade.

Measured: 0 bit error, payload throughput 878.5
Mbits/s. This matches the theoretical throughput
(accounting for Ethernet, IP and UDP overhead and
slower (120 MHz) user clock). The maximum
throughput for this UDP frame size is 915 Mbits/s
when user clock is 125 MHz or above.

Test setup 3:
TCP server transmit throughput on 100 Mbps LAN
Wireshark measurement on receive PC.
Average throughput 93 Mbps.

Test setup 4:
TCP server sends 8Gbits to TCP Java client (see
rxFileTCP in /sim directory) while Wireshark
collects speed information. Point to point LAN
connection from FPGA-based TCP server to PC.

Average throughput: 390.2 Mbits/s

2

TCP Latency Performance Examples

The transmit and receive latency depend on the
frame length. For a maximum frame length of 1460
bytes, FPGA 125 MHz processing clock:

 Transmit latency (from the 1st byte of
payload data input to the 1st byte of
payload data output to the Ethernet MAC):
23.9µs

 Receive latency (from the 1st byte of
Ethernet MAC input to the 1st byte of
payload data output): 12.2µs

If latency is more important than throughput, the
transmit segmentation threshold can be reduced to
X payload bytes. In this more general case,

 Transmit latency (from the 1st byte of
payload data input to the 1st byte of
payload data output to the Ethernet MAC):
0.5 + 2X/125 µs

The receive latency (from the 1st byte of
Ethernet MAC input to the 1st byte of
payload data output): 0.5 + X/125 µs

3

Interfaces

CLK
CLK125G
ASYNC_RESET

MAC_TX_DATA(7:0)
MAC_TX_DATA_VALID
MAC_TX_EOF
MAC_TX_CTS

MAC_RX_DATA(7:0)
MAC_RX_DATA_VALID
MAC_RX_EOF
MAC_RX_CTS

MAC_ADDR(47:0)
IPv4_ADDR(31:0)
IPv6_ADDR(127:0)

M
CLOCKS

CONFIG

TCP-IP
STREAMx

MAC
INTERFACE

USER

MAC
TX DATA

MAC
RX DATA

UDP
STREAMx

CLK
ASYNC_RESET

MAC_TX_DATA(7:0)
MAC_TX_DATA_VALID
MAC_TX_EOF
MAC_TX_CTS

MAC_RX_DATA(7:0)
MAC_RX_DATA_VALID
MAC_RX_SOF
MAC_RX_EOF

MAC_ADDR(47:0)
IPv4_ADDR(31:0)
SUBNET_MASK(31:0)
GATEWAY_IP(31:0)

TCP_RX_DATA(7:0)
TCP_RX_DATA_VALID
TCP_RX_RTS
TCP_RX_CTS

TCP_TX_DATA(7:0)
TCP_TX_DATA_VALID
TCP_TX_CTS

CLOCK

CONFIG

TCP-IP
STREAMx

MAC
INTERFACE

USER

MAC
TX DATA

MAC
RX DATA

UDP RX
STREAM or FRAME
UDP_RX_DATA(7:0)
UDP_RX_DATA_VALID
UDP_RX_SOF
UDP_RX_EOF
UDP_RX_DEST_PORT_NO

UDP_TX_DATA(7:0)
UDP_TX_DATA_VALID
UDP_TX_SOF
UDP_TX_EOF
UDP_TX_ACK
UDP_TX_NAK
UDP_TX_DEST_IP_ADDR
UDP_TX_DEST_PORT_NO
UDP_TX_SOURCE_PORT_NO
UDP_TX_CTS

UDP TX
STREAM or FRAME

User Interface
This interface comprises three primary signal
groups: MAC interface (direct connection to COM-
5401SOFT MAC core or equivalent), TCP streams,
UDP frames or UDP streams to/from the user
application.

All signals are clock synchronous with a user-
selected clock CLK (it does not have to be the same
as the PHY clock). To guarantee a 1 Gbps
throughput, a minimum 125 MHz clock speed is
required.

The user interface is buffered by internal elastic
buffers in both tx/rx directions.

Configuration
The key configuration parameters are brought to the
interface so that the user can change them
dynamically at run-time. Other, more arcane,
parameters are fixed at the time of VHDL synthesis.

Pre-synthesis configuration parameters

The following configuration parameters are set
prior to synthesis in the com5402pkg.vhd package
or at the top level component com5402.vhd.
Configuration
parameters in
com5402pkg.vh
d

Description

Maximum number
of concurrent TCP
streams

NTCPSTREAMS_MAX

Configuration
parameters in
com5402.vhd

Description

Transmit UDP
enabled

NUDPTX
‘1’ to enable, '0' to disable

Receive UDP
enabled

NUDPRX
‘1’ to enable, '0' to disable

IGMP enabled IGMP_EN
'1' to enable UDP multicast (which
requires IGMP)

TCP streams NTCPSTREAMS.
Number of concurrent TCP
streams instantiated for this
component. Each additional TCP
stream requires additional resources
(RAM block, logic).
Must be less than or equal to
NTCPSTREAMS_MAX

Inactive input
stream timeout

TX_IDLE_TIMEOUT
When segmenting a transmit
stream, a packet will be sent out
with pending data if no new data
was received within the specified
timeout. Expressed as integer
multiple of 4s.

TCP keep-alive
period

TCP_KEEPALIVE_PERIOD
period in seconds for sending no
data keepalive frames.
"Typically TCP Keepalives are sent
every 45 or 60 seconds on an idle
TCP connection, and the connection
is dropped after 3 sequential ACKs
are missed"

TCP port numbers Each TCP stream is identified by its
16-bit port number
TCP_LOCAL_PORTS(I)

4

TCP
keep-
alive
period

TCP_KEEPALIVE_PERIOD
period in seconds for sending no data
keepalive frames.
"Typically TCP Keepalives are sent every 45
or 60 seconds on an idle TCP connection, and
the connection is dropped after 3 sequential
ACKs are missed"

Elastic
buffer
size

Customized I/O elastic buffer sizes for
various TCP and UDP components.

Expressed number of address bits in Byte-
wide RAM blocks. For example
ADDR_WIDTH => 12 defines a 4KB
buffer.

Also expressed as an integer number NBUFS
of 16Kbits RAM blocks. NBUFS is typically
restricted to 1,2,4 or 8 (see code comments).

Defined as generic parameters in the
following components:
tcp_rxbufndemux2.vhd, tcp_txbuf.vhd,
udp_tx, stream_2_packets.vhd.

Configuration
parameters in
arp_cache2.vhd

Description

Routing table refresh
period
REFRESH_PERIOD(19:0)

Refresh period for this
routing table. Expressed as
an integer multiple of
100ms. Default value is
3000 (5 minutes).

Configuration
parameters in
stream_2_packets.vhd

Description

Maximum packet size
when segmenting a stream
to packets
MAX_PACKET_SIZE

When segmenting a
transmit stream, a packet
will be sent out as soon as
MAX_PACKET_SIZE
bytes are collected.
The recommended size is
512 bytes for a low
overhead.

Retransmission timer
TX_RETRY_TIMEOUT

A re-transmission attempt
will be made periodically
until routing information
is available and the
transmit path to the MAC
is available. The retry
period is expressed as an
integer multiple of 4s.

Run-time configuration parameters

The user can set and modify the following controls
at run-time. All controls are
synchronous with the user-supplied
global CLK.

Run-time
configuration

Description

MAC address
MAC_ADDR(47:0)

This network node 48-bit MAC
address. The user is responsible
for selecting a unique ‘hardware’
address for each instantiation.

Natural bit order: enter
x0123456789ab for the MAC
address 01:23:45:67:89:ab
It is essential that this input
matches the MAC address used
by the MAC/PHY.

IPv4 address
IPv4_ADDR(31:0)

Local IP address. 4 bytes for
IPv4.
Byte order:
(MSB)192.68.1.30(LSB)

Multicast IP address
MULTICAST_IP_ADDR
(31:0)

to receive UDP multicast
messages. One multicast address
only
0.0.0.0 to signify that IP
multicasting is not supported
here.

Subnet Mask
SUBNET_MASK(31:0)

Subnet mask to assess whether
an IP address is local (LAN) or
remote (WAN)
Byte order:
(MSB)255.255.255.0(LSB)

Gateway IP address
GATEWAY_IP(31:0)

One gateway through which
packets with a WAN destination
are directed.
Byte order:
(MSB)192.68.1.1(LSB)

Transmit UDP
destination IP address
UDP_TX_DEST_
IP_ADDR

The UDP destination IP address
can be modified dynamically on
a frame-by-frame basis.

Transmit UDP
destination port
number
UDP_TX_DEST_
PORT_NO

The UDP destination port
number can be modified
dynamically on a frame-by-
frame basis.

Transmit UDP source
port number
UDP_TX_SOURCE_
PORT_NO

The UDP source port number
can be modified dynamically on
a frame-by-frame basis.

Check UDP port
number
CHECK_UDP_RX_
DEST_PORT_NO

check the received UDP frame
destination port number matches
UDP_RX_DEST_
PORT_NO (1) or ignore it (0)
In the latter case, the application
is responsible for checking

5

destination ports.

Receive UDP port
number
UDP_RX_DEST_
PORT_NO

Local UDP port listening for
incoming UDP frames.
Receive and transmit UDP
streams can use identical or
different ports at the user’s
discretion.

Limitations
This software does not support the following:

- IEEE 802.3/802.2 encapsulation, RFC
1042, only the most common Ethernet
encapsulation.

Only one gateway is supported at any given time.

Software Licensing
The COM-5402SOFT is supplied under the
following key licensing terms:

1. A nonexclusive, nontransferable license to
use the VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bitstream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicense.pdf

Configuration Management
The current software revision is 007x.

Directory Contents

/doc Specifications, user manual,
implementation documents when
applicable.

/src .vhd source code, .constraint file, .pkg
packages.
One component per file.

/sim Testbenches.
Please note that end-to-end TCP
simulation requires both TCP server and
TCP client code (such as COM-
5403SOFT)

/project1 Xilinx Vivado 2017 project
Xilinx Vivado 2019 project

/use_example Examples of interface with the Ethernet
MAC (COM-5401SOFT and Xilinx
TEMAC)

VHDL development environment
The VHDL software was developed using the
following development environment:

(a) Xilinx Vivado 2019.2 for synthesis, place
and route and VHDL simulation

(b) Xilinx ISE 14.7 for synthesis, place and
route

The entire project fits easily within a Xilinx Artix7-
100T. Therefore, the ISE project can be processed
using the free Xilinx WebPack tools.

Ready-to-use Hardware
Use examples are available to run on the following
Comblock hardware modules:

 COM-1800 FPGA + GbE LAN + DDR3
SODIMM SOCKET + ARM + NAND
development platform
http://www.comblock.com/com1800.html

All hardware schematics are available at
https://comblock.com/download.html

6

http://www.comblock.com/com1800.html
http://www.comblock.com/download/softwarelicense.pdf

 Top-Level VHDL hierarchy

The code is stored with one, and only one,
component per file.

The root entity (highlighted above) is
COM5402.vhd. It contains instantiations of the IP
protocols and a transmit arbitration mechanism to
select the next packet to send to the MAC/PHY.

The root also includes the following components:

- The PACKET_PARSING.vhd component
parses the received packets from the MAC
and efficiently extracts key information
relevant for multiple protocols. Parsing is
done on the fly without storing data.
Instantiated once.

- The ARP.vhd component detects ARP
requests and assembles an ARP response

Ethernet packet for transmission to the
MAC. Instantiated once.

- The PING.vhd component detects ICMP
echo (ping) requests and assembles a ping
echo Ethernet packet for transmission to the
MAC. Instantiated once.

- The WHOIS2.vhd component generates an
ARP request (broadcast) packet requesting
that the target identified by its IP address
responds with its MAC address.

- The ARP_CACHE2.vhd component is a
shared routing table that stores up to 128 IP
addresses with their associated 48-bit MAC
addresses and a ‘freshness’ timestamp. An
arbitration circuit is used to arbitrate the
routing request from multiple transmit
instances. Instantiated once.

- The IGMP_QUERY.vhd component detects
a valid IGMP membership query and
triggers a response when applicable.

- The IGMP_REPORT.vhd component sends
an IGMP membership report out to whom it
may concern.

- The flexible UDP_TX.vhd component
encapsulates a data packet into a UDP
frame addressed from any port to any
port/IP destination. Instantiated once,
irrespective of the number of source or
destination UDP ports.

- The UDP_RX.vhd component validates
received UDP frames and extracts the data
packet within. As the validation is
performed on the fly (no storage) while
received data is passing through, the
validity confirmation is made available at
the end of the packet. The calling
application should therefore be able to
‘backtrack’ upon receiving an invalid
packet. Instantiated once, irrespective of the
number of UDP ports being listened to.
Although this component is written for one
port, it can very easily be modified to
accommodate several ports (follow the
PORT_NO signal). Therefore, there is
never any need to instantiate more than one
component.

- The TCP_SERVER.vhd component is the
heart of the TCP protocol. It is written
parametrically so as to support
NTCPSTREAMS concurrent TCP

7

connections. It essentially handles the TCP
state machine of a TCP server: initially
listening for connection requests from
remote TCP clients, establishing and
tearing down the connections and managing
flow control while the connections are
established.

- The TCP_TX.vhd component formats TCP
tx frames, including all layers: TCP, IP,
MAC/Ethernet. It is common to all
concurrent streams.

- The TCP_TXBUF.vhd component stores
TCP tx payload data in individual elastic
buffers, one for each transmit stream. The
buffer size is configurable prior to synthesis
as NBUFS*16Kbits RAM blocks.

- The TCP_RXBUFNDEMUX2.vhd
component demultiplexes several TCP rx
streams. It does not include any elastic
buffer. It is expected that the user will
instantiate elastic buffers if the application
requires it. Data bytes are received in
sequence without gaps or backtracking.

Additional components are also provided for use
during system integration or tests. These
components require easy manual editing to connect
to the top level fabric.

- DHCP_CLIENT.vhd to fetch an IP address
dynamically from an external DHCP server.

- DHCP_SERVER.vhd to dynamically lease
IP addresses from a group of consecutive
addresses when queried by DHCP clients.

- STREAM_2_PACKETS.vhd segments a
continuous data stream into packets. The
transmission is triggered by either the
maximum packet size or a timeout waiting
for fresh stream bytes.

- PACKETS_2_STREAM.vhd reassembles a
data stream from received valid packets
while discarding invalid packets. The
packet’s validity is assessed at the end of
packet. It is designed to connect seamlessly
with the TCP_RX.vhd component.

- LFSR11P.vhd generates a pseudo-random
binary stream PRBS11 for use during
throughput and bit error rate tests. It is
capable of generating 1 Gbps (8 bit per
clock @ 125 MHz).

- BER2.vhd synchronizes with a received
data stream and counts bit errors. It is also
capable of working at 1 Gbps.

VHDL simulation
A testbench (tb*.vhd), located in the /sim directory,
can be used to validate the source code through
VHDL simulation. However, because of the
interactive nature of the TCP and DHCP protocols,
other IP cores are needed for such simulations:

 TCP end-to-end simulation is only possible
when a TCP client (COM-5403SOFT or
equivalent) are present.

 Simulation of DHCP dynamic assignment of IP
addresses is only possible when a DHCP client
(COM-5403SOFT or equivalent) are present.

Warning: Because of the COM-5402SOFT
maturity, a few testbenches used during
development are kept in the /sim directory 'just in
case'. They may require minor editing to reflect the
features added over time. Only the testbenches with
recent timestamps are ready to use 'out-of-the box'.

Clock / Timing

The software uses one synchronous clock CLK. The
clock should be at least 125 MHz in order to take
full advantage of the Gbit Ethernet speed. The code
can operate properly at less than 125 MHz, albeit at
reduced throughput.

The software uses one synchronous clock CLK. The
clock should be at least 125 MHz in order to take
full advantage of the Gbit Ethernet speed. The code
can operate properly at less than 125 MHz, albeit at
reduced throughput.

The code is written to run at 125 MHz on the
following targets:

 Xilinx Spartan-6 –2 speed grade with 2
concurrent TCP streams instantiated.

 Any Xilinx 7-series FPGA/SoC, even at the
lowest speed grade.

8

9

Libcap File Player
Real network packets captured by the popular Wireshark LAN analyzer can be used as realistic stimulus for the
COM-5402 software. The tbcom5402.vhd test bench reads a libpcap-formatted file as captured by Wireshark
and feeds it to the COM-5402 receive path. The input file must be named input.cap and be placed in the same
directory as the ISE project.

The libpcap file format is described in http://wiki.wireshark.org/Development/LibpcapFileFormat

Note that Wireshark is sometimes unable to capture checksum fields when the PC operating system offloads the
checksum computation to the network interface hardware. In order to still be allowed to simulate, set
SIMULATION := ‘1’ in the generic map section of the COM5402.vhd component. When doing so,

(a) the IP header checksum is considered valid when read as x”0000”.
(b) The TCP checksum computation is forced to a valid 0x0001, irrespective of the 16-bit field captured by

Wireshark.

Use Case#1: Two TCP servers, No UDP

Configuration steps:

(a) Instantiate one COM5402.vhd component for each MAC and Ethernet transceiver. Connect the MAC
signals between the COM5402.vhd component and the MAC (COM5401.vhd for example).

(b) Set the number of concurrent TCP streams in the com5402pkg.vhd package.
constant NTCPSTREAMS: integer := 2;
Likewise, define the number of UDP streams as zero.
constant NUDPTX: integer := 0;
constant NUDPRX: integer := 0;

(c) Define the ports for each stream in com5402.vhd:
TCP_LOCAL_PORTS(0) <= x”0400”; -- port 1024 for stream #0
TCP_LOCAL_PORTS(1) <= x”0404”; -- port 1028 for stream #1

(d) Enter the MAC/IP/Gateway addresses and subnet mask at the COM5402.vhd input.

(e) Connect the two streams to the COM5402.vhd top level I/Os.
-- Rx streams
TCP_RX_DATA =>
TCP_RX_DATA_VALID =>
 TCP_RX_CTS =>
-- Tx streams
TCP_TX_DATA =>
TCP_TX_DATA_VALID =>
TCP_TX_CTS =>

Use Case#2: UDP streaming (tx/rx), No TCP server

Configuration steps:

(a) Instantiate one COM5402.vhd component for each MAC and Ethernet transceiver. Connect the MAC
signals between the COM5402.vhd component and the MAC (COM5401.vhd for example).

(b) In the com5402pkg.vhd package set the following constants as follows:
constant NTCPSTREAMS: integer := 0;
constant NUDPTX: integer := 1;
constant NUDPRX: integer := 1;

10

http://wiki.wireshark.org/Development/LibpcapFileFormat

(c) Define the UDP tx and rx local ports in com5402.vhd:
UDP_RX_DEST_PORT_NO <= x”0400”;
UDP_TX_SOURCE_PORT_NO <= x”0404”; (can be changed for each tx packet)

(d) Enter the MAC/IP/Gateway addresses and subnet mask at the COM5402.vhd input.

(e) If the application calls for UDP streaming instead of raw UDP frames, instantiate the
PACKETS_2_STREAM.vhd and STREAM_2_PACKETS.vhd components.

Components overview

WHOIS2.VHD
Before sending any IP packet, one must translate the destination IP address into a 48-bit MAC address.

A look-up table (within arp_cache2.vhd) is available for this purpose. Whenever there is
no entry for the destination IP address in the look-up table, an ARP request is broadcasted
to all asking for the recipient to respond with an ARP response. The main task of the
whois2.vhd component is to assemble and send this ARP request.

ARP_CACHE2.VHD
A block RAM is used as cache memory to store 128 MAC/IP/Timestamp records. Each record
comprises (a) a 48-bit MAC address, (b) the associated 32-bit IPv4 address and (c) a timestamp when
the information was last updated. The information is updated continuously based on received ARP
responses and received IP packets. The component keeps track of the oldest record, which is the next
record to be overwritten.

Whenever the application requests the MAC address for a given IP address (search key), this
component searches the block RAM for a matching IP address key. If found, it returns the associated
MAC address. If the search key is not found or is older than a refresh period, this component asks
whois2.vhd to send an ARP request packet.

The code is optimized for fast access. Response time is between 0.1 and 1.33 us depending on the
record location in memory.

This routing table is instantiated once and shared among multiple instances requiring routing services.
An arbitration circuit is used to sequence routing requests from several transmit instances (for example
several instantiations of the UDP_TX component).

11

COM-5402SOFT
IP/TCP SERVER/UDP/ARP/PING STACK for GbE
VHDL SOURCE CODE OVERVIEW

ComBlock Compatibility List
FPGA development platform
COM-1800 FPGA (Xilinx Artix7-100T) + DDR3
SODIMM + GbE LAN development platform
Software
COM-5401SOFT Tri-mode 10/100/1000 Mbps Ethernet
MAC. VHDL source code.
Xilinx TEMAC, rev 9.0 or above
COM-5403SOFT IP/UDP/TCP CLIENT/ARP/PING
stack. VHDL source code.

Acronyms
Acronym Definition

BER Bit Error Rate

BRAM Dual-port Block RAM

CTS Clear To Send, a flow-control signal
allowing the data source to send data.

IP Internet Protocol

LSb Least Significant bit

MSb Most Significant bit

PRBS-11 Pseudo-Random Binary Sequence, 2047-bit
period

Rx Receive

TCP Transmission Control Protocol

Tx Transmit

UDP User Datagram Protocol

ComBlock Ordering Information

COM-5402SOFT IP/TCP
SERVER/UDP/ARP/PING PROTOCOL STACK,
VHDL SOURCE CODE

ECCN: EAR99

MSS • 845 Quince Orchard Boulevard Ste N •
Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2020 Issued 10/2/2020

http://www.mobile-sat.com/
http://www.comblock.com/download/com5403soft.pdf
http://www.comblock.com/download/com5401soft.pdf
http://www.comblock.com/com1800.html

	COM-5402SOFT IP/TCP SERVER/UDP/ARP/PING STACK for GbE VHDL SOURCE CODE OVERVIEW
	COM-5402SOFT IP/TCP SERVER/UDP/ARP/PING STACK for GbE VHDL SOURCE CODE OVERVIEW
	Overview
	Block Diagram
	Target Hardware
	Device Utilization Summary
	Throughput Performance Examples
	TCP Latency Performance Examples
	User Interface
	Configuration
	The user can set and modify the following controls at run-time. All controls are synchronous with the user-supplied global CLK.

	Limitations
	Software Licensing
	Configuration Management
	VHDL development environment
	Ready-to-use Hardware
	Top-Level VHDL hierarchy
	VHDL simulation
	Clock / Timing
	Libcap File Player
	Use Case#1: Two TCP servers, No UDP
	Use Case#2: UDP streaming (tx/rx), No TCP server
	Components overview
	WHOIS2.VHD
	Before sending any IP packet, one must translate the destination IP address into a 48-bit MAC address. A look-up table (within arp_cache2.vhd) is available for this purpose. Whenever there is no entry for the destination IP address in the look-up table, an ARP request is broadcasted to all asking for the recipient to respond with an ARP response. The main task of the whois2.vhd component is to assemble and send this ARP request.

	ARP_CACHE2.VHD

	ComBlock Compatibility List
	Acronyms
	ComBlock Ordering Information

