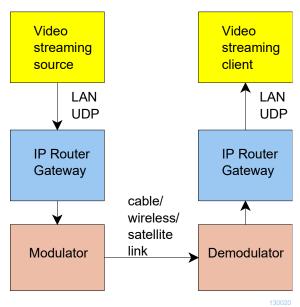


Overview

This IP router gateway connects a local IP network (LAN) with a remote network (WAN) over a continuous link.

The routing is based on the destination IP address.

The COM-5404SOFT **source code** is designed to support 1Gbps throughputs when instantiated in low-cost FPGAs.


Complies with IPv4 routers specifications RFC1812

The following protocols are implemented in modular VHDL components: IP forwarding, IP routing, differentiated services for Quality Of Service management, ARP, PING, co-located DHCP server, HDLC frame encapsulation, V.35 scrambling. These components are easily selected 'a la carte' for custom applications.

Ancillary components are also included for TCP or UDP remote monitoring and control, test signal generation and bit error rate measurement.

Typical application is to bridge islands of IP-based networks through satellite / wireless / cable modems:

- UDP video streaming
- o IP datacasting
- o Two-way IP communications

One-way video streaming over UDP

Support for both 8-bit parallel and 1-bit serial modem interfaces.

The code is written specifically for IEEE 802.3 Ethernet packet encapsulation (RFC 894), IPv4 protocols.

The code interfaces seamlessly with the <u>COM-5401SOFT</u> Tri-mode 10/100/1000 Mbps Ethernet MAC for the MAC / PHY layers implementation. However, the MAC interface is generic and simple enough to interface with any Ethernet MAC component with minimum glue logic.

The component's very efficient implementation makes it suitable for instantiations within a small FPGA. The baseline IP router uses 28% of a Xilinx Spartan-6 LX45.

Principle of operation

Concept

The COM-5404 forwards IP frames from a RJ-45 10/100/1000 Mbps LAN interface to a clock-synchronous modem interface and vice versa. The interface can be 1-bit serial or 8-bit parallel.

The IP frames received over the LAN are stripped of their link layer information: Ethernet source address, destination address and type are removed, keeping only the IP fields.

TCP, UDP, ICMP and IGMP packets are processed since they are transmitted as IP datagrams.

Non IP frames are rejected.

IP frames whose Time-To-Live field has reached zero are discarded. For the other packets, the TTL is decremented.

Limited broadcasts (those with destination IP address 255.255.255) are not forwarded.

The COM-5404 implements Differentiated Services (DiffServ) whereby IP forwarding from LAN to WAN is prioritized on the basis of the IP frame DSCP field. Five queues handle different traffic classes, including Expedited Forwarding (EF) for low-loss, low-latency, low-jitter frames and four Assured Forwarding (AF1-AF4) classes. Frames are discarded without notification if the associated queue is full. The IP frame maximum size (maximum transmission unit (MTU)) is 1500 bytes. No datagram fragmentation is necessary nor used.

The IP frames are then encapsulated within a bitserial or byte-wise HDLC frame, one packet per frame. A 16-bit CRC is inserted at the end of each frame to detect errors upon reception. HDLC encoding transmits empty frames when no payload data is available.

Bit-serial HDLC frames can be subsequently scrambled with a V.35 scrambler to ensure balance between 0's and 1's and guarantee bit transitions (for a well behaved modulated spectrum and to assist demodulator acquisition when applicable).

The resulting stream is then sent to the WAN over a continuous link, typically using a modem.

The reverse process is performed at the receiving end. Erroneous packets which do not pass the CRC test are rejected.

IP forwarding

The forwarding rules are specified in the RFC1812 document "Requirements for IP Version 4 Routers".

The decision to forward a LAN IP frame to the remote WAN is based solely on the destination IP address. To determine whether a frame is destined to a local (LAN) or remote (WAN) IP address, the router compares the masked destination address (Destination IP address & subnet mask) with the masked router address

(IP router own IP address & subnet mask). When this comparison is false, the IP frame is forwarded to the WAN.

Example:

(a) Router IP address: 192.68.0.2

(b) Router subnet mask: 255.255.255.0

(c) Frame destination IP address is 74.54.97.66

Masked frame destination: 74.54.97.0

Masked router address: 192.68.0.0

Since the masked destination does not match the masked router address, the frame is not for a local destination. Consequently the router will forward the frame to the WAN.

Differentiated services

The router also prioritizes IP forwarding based on the IP header differentiated services code point (DSCP).

A forwarded IP frame is sent to one of five queues depending on its DSCP:

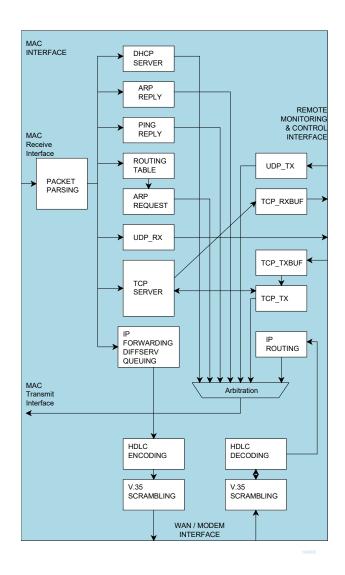
Queue 4 is for low-loss, low-latency, low-jitter, and assured bandwidth service. It is associated with "Expedited Forwarding" per-hop behavior. The recommended DSCP value for EF is `101110' (see RFC-2474)

Queues 0-3 are associated with "Assured Forwarding" per-hop behavior (see RFC-2597)

Users can select the link bandwidth apportionment among the five queues.

IP routing (WAN-TO-LAN)

The stream received over the link undergoes V.35 descrambling and HDLC decoding to reconstruct IP frames. Erroneous frames which do not pass the CRC test are rejected.


Valid IP frames are re-encapsulated inside an Ethernet packet, one IP frame per Ethernet packet.

The IP address – MAC address relationships are stored within a routing table to expedite the Ethernet packet construction. The routing table includes up to 512 local IP addresses, with associated 48-bit MAC address and 'freshness' stamp.

When the routing table has no information regarding the destination IP address, it will attempt to find out by means of an Address Resolution Protocol (ARP) query-reply transaction. The router will broadcast an ARP request asking "whois the destination IP address?" and will wait for the ARP reply with the MAC information.

Co-located DHCP server

A built-in DHCP server automatically assigns IP addresses to local IP clients, for ease of network management. The addresses are taken from a pool of contiguous IP addresses and leased for a limited time. In addition to assigning IP addresses, the DHCP server informs clients about important network management parameters such as gateway and DNS.

Target Hardware

The code is written in generic VHDL so that it can be ported to a variety of FPGAs. The code was developed and tested on a Xilinx Spartan-6 FPGA.

It can be easily ported to any Xilinx series 7, Virtex-6, Spartan-6, Virtex-5 FPGAs and other FPGAs capable of running at 125 MHz or above.

Device Utilization Summary

Device: Xilinx Spartan-6	
8-bit modem interface	
No DHCP server	
HDLC disabled	
No remote monitoring & control	
Flip Flops (registers)	2033
LUTs	3443
Block RAM/FIFO	33
DSP48A1s	0
GCLKs	2
DCMs/PLLs	0

8-bit modem interface	
DHCP server instantiated	
HDLC disabled	
No remote monitoring & control	
Flip Flops (registers)	3496
LUTs	5327
Block RAM/FIFO	35
DSP48A1s	0
GCLKs	2
DCMs/PLLs	0

8-bit modem interface	
DHCP server instantiated	
HDLC enabled	
No remote monitoring & control	
Flip Flops (registers)	3963
LUTs	6306
Block RAM/FIFO	39
DSP48A1s	0
GCLKs	2
DCMs/PLLs	0

8-bit modem interface DHCP server instantiated	
HDLC enabled	
1 TCP server for remote	
monitoring & control	
Flip Flops (registers)	5254
LUTs	8155
Block RAM/FIFO	47
DSP48A1s	0
GCLKs	2
DCMs/PLLs	0

1-bit serial modem interface	
DHCP server instantiated	
HDLC enabled	
V.35 scrambling enabled	
1 TCP server for remote	
monitoring & control	
Flip Flops (registers)	4073
LUTs	5948
Block RAM/FIFO	39
DSP48A1s	1
GCLKs	2
DCMs/PLLs	0

Smaller footprints can be achieved by reducing the number of block RAMs used for implementing the differentiated services within the

IP_FORWARDING.vhd component (currently set at 32 block RAMs).

Interfaces

	CLK SYNC_RESET LAN / MAC MAC_TX_DATA[7:0] MAC_TX_DATA_VALID MAC_TX_SOF MAC_TX_EOF MAC_TX_EOF MAC_TX_CTS MAC_RX_DATA[7:0] MAC_RX_DATA_VALID MAC_RX_SOF MAC_RX_EOF	WAN / MODEM WAN_TX_DATA[7:0] WAN_TX_DATA_VALID WAN_TX_SOF WAN_TX_EOF WAN_TX_CTS WAN_RX_DATA[7:0] WAN_RX_DATA_VALID WAN_RX_SOF WAN_RX_EOF WAN_RX_CTS	
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	IPv4_ADDR[31:0] SUBNET_MASK[31:0] GATEWAY[31:0] ROUTER config. DHCP_SERVER config.	REMOTE M&C TCP_RX_DATA_VALID TCP_RX_DATA_VALID TCP_RX_RTS TCP_RX_CTS TCP_TX_DATA[7:0] TCP_TX_DATA_VALID TCP_TX_CTS	

Interface groups

This interface comprises four primary I/O groups: LAN/MAC interface (direct connection to COM-5401SOFT MAC core or equivalent), remote Monitoring & Control interface, WAN/modem interface and controls.

All signals are clock synchronous with a userselected clock CLK (it does not have to be the same as the PHY clock). To guarantee a 1 Gbps throughput, a minimum 125 MHz clock speed is required.

All interfaces are buffered by internal elastic buffers in both transmit and receive directions.

Flow control signals Clear-To-Send (CTS) and Ready-To-Send (RTS) help regulate data throughput and avoid overflow/underflow conditions.

Configuration

The key configuration parameters are brought to the interface so that the user can change them dynamically at run-time. Other, more arcane, parameters are fixed at the time of VHDL synthesis.

Pre-synthesis configuration parameters

The following configuration parameters are set prior to synthesis in the com5404.vhd top level component generic section.

component generic sectio	
Configuration parameters in com5404.vhd generic	Description
section	
DHCP server	DHCP_SERVER_EN '1' to instantiate a DHCP server
HDLC codec	HDLC_EN Instantiate ('1') the HDLC encoder and decoder within. Also applies to the V.35 scrambler/descrambler
WAN data width	WAN_NBITS configures for either 1-bit serial or 8-bit parallel WAN interface MUST be set to 8-bit parallel
	when HDLC is not instantiated (HDLC_EN = '0')
Monitoring & Control TCP server	REMOTE_MC_TCP. '1' to instantiate a TCP server at port 1028 for conveying monitoring and control messages from a remote user/client. '0' otherwise
Monitoring & Control UDP server	REMOTE_MC_UDP. '1' to instantiate a UDP server at port 1029 for receiving control messages from a remote user/client. '0' otherwise

Run-time configuration parameters

The user can set and modify the following controls at run-time. All controls are synchronous with the user-supplied global CLK.

global CLK.						
IP router run-time	Description					
configuration	_					
MAC address	This network node 48-bit MAC					
MAC_ADDR(47:0)	address. The user is responsible					
	for selecting a unique 'hardware'					
	address for each instantiation.					
	Natural bit order: enter					
	x0123456789ab for the MAC					
	address 01:23:45:67:89:ab					
	It is essential that this input					
	matches the MAC address used					
	by the MAC/PHY.					
IPv4 address	Local IP address. 4 bytes for					
IPv4_ADDR(31:0)	IPv4.					
	Byte order:					
	(MSB)192.68.1.30(LSB)					
Subnet Mask	Subnet mask to assess whether					
SUBNET_MASK(31:0)	an IP address is local (LAN) or					
	remote (WAN)					
	Byte order:					
	(MSB)255.255.0(LSB)					
Gateway IP address	The router will forward IP					
GATEWAY_IP(31:0)	frames from the WAN to this					
	gateway when the destination IP					
	is not local					
	Byte order: (MSB)192.68.1.1(LSB)					
Controls bit	0: enable(1)/disable(0) HDLC					
CONTROL(15:0)	encoding [1 or 8-bit format]					
CONTROL(15.0)	encoding [1 of 8-oft format]					
hit	1: enable(1)/disable(0) V.35 bit					
	serial scrambling [applies to 1-					
	bit serial format only]					
	bit 8: enable(1)/disable(0)					
	HDLC decoding [1 or 8-bit					
	format]					
	_					
	bit 9: enable(1)/disable(0) V.35					
	bit serial descrambling [applies					
	to 1-bit serial format only]					

DHCP server run-	Description
time configuration	1
DHCP server enable	enable(1)/disable(0) DHCP
DHCP_SERVER_EN2	server at run-time. Requires
	DHCP_SERVER to be
	instantiated through
	DHCP_SERVER_EN
DHCP server IP pool	The DHCP server IP pool starts
start address	at this address. The 3 upper
DHCP_SERVER_IP_	address bytes are
MIN_LSB	IPv4_ADDR(31:8)
	In order to avoid conflicts it is
	In order to avoid conflicts, it is best to select a start address
	above this router own Ipv4
	address.
DHCP server IP pool	Number of IP addresses in the
size	DHCP server IP pool.
DHCP_SERVER_NIPs	Maximum: 253-IPv4 ADDR(7:0)
Lease time	Lease time, in seconds, of IP
DHCP_SERVER_	addresses assigned to DHCP
LEASE_TIME	clients.
Gateway address	The DHCP server informs its
DHCP_ROUTER	clients of a gateway to the
	WAN. In most cases, this is the
	co-located router IP address
DNG 11	IPv4_ADDR
DNS address	The DHCP server informs its
DHCP_SERVER_DNS	clients of a domain name server
	DNS address.

Limitations

This software does not support the following:

- IEEE 802.3/802.2 encapsulation, RFC 1042, only the most common Ethernet encapsulation.

Only one gateway is supported at any given time.

Software Licensing

The COM-5404SOFT is supplied under the following key licensing terms:

- 1. A nonexclusive, nontransferable license to use the VHDL source code internally, and
- 2. An unlimited, royalty-free, nonexclusive transferable license to make and use products incorporating the licensed materials, solely in bitstream format, on a worldwide basis.

The complete VHDL/IP Software License Agreement can be downloaded from http://www.comblock.com/download/softwarelicense.pdf

Configuration Management

The current software revision is 1c.

Directory	Contents
/	Project files for various Xilinx ISE versions.
/doc	Specifications, user manual, implementation documents
/src	.vhd source code, .ucf constraint files, .pkg packages. One component per file.
/sim	Testbenches
/bin	.ngc, .bit, .mcs configuration files
/use_example	use example, .ngc for Spartan-6 and instantiation template
	Test components (pseudo random binary sequence generator, bit error rate measurement, stream to packets segmentation, etc) are in directory \use_example\src

Key file: Xilinx ISE project file: com-5404 ISE144.xise

VHDL development environment

The VHDL software was developed using the following development environment:

- (a) Xilinx ISE 14.4 with XST as synthesis tool
- (b) Xilinx ISE Isim as VHDL simulation tool

Ready-to-use Hardware

The project in the use_example folder is ready-touse with the following off-the-shelf hardware :

- <u>COM-1500</u> FPGA + ARM + DDR2 SODIMM + NAND + USB2 development platform
- <u>COM-5102</u> 1-Port 10/100/1000 Mbps Ethernet Transceiver

Xilinx-specific code

The VHDL source code is written in generic VHDL with one Xilinx primitive (dual-port block RAM). No Xilinx CORE is used.

Top-Level VHDL hierarchy

🦳 🦻 com5404 ISE144
🖳 📰 xc6slx45-2fgg484
🖮 🐘 COM5404 - Behavioral (src\com5404.vhd)
🔚 Inst_TIMER_4US - TIMER_4US - Behavioral (src\timer_4us.vhd)
🔤 🔚 Inst_PACKET_PARSING - PACKET_PARSING - Behavioral (src\pa
🔤 🙀 Inst_ARP - ARP - Behavioral (src\arp.vhd)
🔤 🙀 Inst_PING - PING - Behavioral (src\ping.vhd)
🖙 🔚 WHOIS2_001 - WHOIS2 - Behavioral (src\whois2.vhd)
🚋 🚯 ARP_CACHE3_001 - ARP_CACHE3 - Behavioral (src\arp_cache3.
🖶 🔚 DHCP_SERVER_001 - DHCP_SERVER - Behavioral (src\dhcp_serv
🖶 🔚 IP_FORWARDING_001 - IP_FORWARDING - Behavioral (src\ip_fo
🔤 🙀 V35SCRAMBLER_001 - V35SCRAMBLER - behavioral (src\SCRAN
🔤 🙀 V35DESCRAMBLER_001 - V35SCRAMBLER - behavioral (src\SCR
🖶 🔚 HDLC_SERIAL_2RX_001 - HDLC_SERIAL_2RX - behavioral (src\SE
🖶 🔚 HDLC_BYTE_TX_001 - HDLC_BYTE_TX - behavioral (src\hdlc_by
🖶 🔚 HDLC_BYTE_RX_001 - HDLC_BYTE_RX - behavioral (src\hdlc_by
🖶 🔚 IP_ROUTING_001 - IP_ROUTING - Behavioral (src\ip_routing.vhc
🔤 Inst_UDP2SERIAL - UDP2SERIAL - Behavioral (src\udp2serial.vhc
🔤 TCP_SERVER_001 - TCP_SERVER - Behavioral (src\tcp_server.vhd
🔚 Inst_TCP_TX - TCP_TX - Behavioral (src\tcp_tx.vhd)
🚋 强 Inst_TCP_RXBUFNDEMUX2 - TCP_RXBUFNDEMUX2 - Behavioral
🞰 🙀 Inst_TCP_TXBUF - TCP_TXBUF - Behavioral (src\tcp_txbuf.vhd)

The code is stored with one, and only one, component per file.

The root entity (highlighted above) is *COM5404.vhd*. It contains instantiations of the IP router, DHCP server, TCP server and ancillary components.

The root also includes the following components:

- The *PACKET_PARSING.vhd* component parses the received packets from the MAC and efficiently extracts key information relevant for multiple protocols. Parsing is done on the fly without storing data. Instantiated once.
- The *ARP.vhd* component detects ARP requests and assembles an ARP response Ethernet packet for transmission to the MAC. Instantiated once.
- The *PING.vhd* component detects ICMP echo (ping) requests and assembles a ping echo Ethernet packet for transmission to the MAC. Instantiated once.

- The *WHOIS2.vhd* component generates an ARP request (broadcast) packet requesting that the target identified by its IP address responds with its MAC address.
- The *ARP_CACHE3.vhd* component is a shared database storing up to 512 IP addresses with their associated 48-bit MAC addresses and a 'freshness' timestamp. An arbitration circuit is used to arbitrate the routing request from multiple transmit instances. Instantiated once.
- The *IP_FORWARDING.vhd* component filters those LAN IP frames with remote destination and queues them in five priority queues awaiting transmission to the WAN.
- The *HDLC_SERIAL_2TX.vhd* component encapsulates IP frames for transmission over a bit-serial continuous link. It also inserts empty frames when no payload data is waiting for transmission. A 16-bit CRC field is appended to each frame for error detection at the receiving end.
- The *HDLC_SERIAL_2RX.vhd* component processes the received bit-serial continuous stream. It restores the IP frames by removing the HDLC frame encapsulation after verifying the frame integrity (valid CRC, etc).
- The *HDLC_BYTE_TX.vhd* component encapsulates IP frames for transmission over a byte-wide continuous data link. It also inserts empty frames when no payload data is waiting for transmission. A 16-bit CRC field is appended to each frame for error detection at the receiving end.
- The *HDLC_BYTE_RX.vhd* component processes the received byte-wide continuous stream. It restores the IP frames by removing the HDLC frame encapsulation after verifying the frame integrity (valid CRC, etc).
- The *V35SCRAMBLER.vhd* component can be configured as scrambler or descrambler. It complies with the V.35 and Intelsat IESS-308 standards.
- The IP_ROUTING.vhd component converts 8-bit parallel stream from WAN to LAN IP packets. Each incoming IP frame received from the WAN is stored temporarily in one of the NBUFS buffers until routing

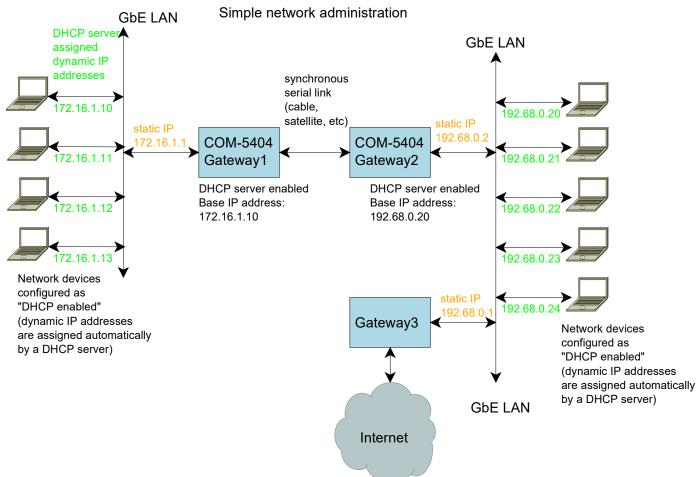
information (namely the destination MAC address) is received from the *ARP_CACHE3.vhd* routing table. When this happens, the IP frame is encapsulated into an Ethernet frame and sent to the LAN.

- The *TCP_SERVER.vhd* component is one of four components implementing a TCP server for remote monitoring and control. It awaits one TCP connection at port 1028 from a remote client. It essentially handles the TCP state machine of a TCP server: initially listening for connection requests from remote TCP clients, establishing and tearing down the connections and managing flow control while the connections are established.
- The *TCP_TX.vhd* component formats TCP tx frames, including all layers: TCP, IP, MAC/Ethernet.
- The *TCP_TXBUF.vhd* component stores TCP tx payload data in individual elastic buffers, one for each transmit stream. The buffer size is configurable prior to synthesis as NBUFS*16Kbits RAM blocks.
- The TCP_RXBUFNDEMUX2.vhd component demultiplexes several TCP rx streams and stores data in elastic buffers. Data bytes are received in sequence without gaps or backtracking.

Additional components are also provided for use during system integration or tests.

- *LFSR11P.vhd* generates a pseudo-random binary stream PRBS11 for use during throughput and bit error rate tests. It is capable of generating 1 Gbps (8 bit per clock @ 125 MHz).
- *BER2.vhd* synchronizes with a received data stream and counts bit errors. It is also capable of working at 1 Gbps.

VHDL simulation


Several complex testbenches (tb*.vhd) are located in the /sim directory. However, these testbenches simulate complex environments (end-to-end TCP client/server connections) and require additional components such as TCP server, TCP client and DHCP client. There is no simple standalone testbench.

Clock / Timing

The software uses one synchronous clock CLK. The clock should be at least 125 MHz in order to take full advantage of the Gbit Ethernet speed. The code can operate properly at less than 125 MHz, albeit at reduced throughput.

The code is written to run at 125 MHz on a Xilinx Spartan-6-2 speed grade.

Network Administration

The diagram above illustrates a simple network administration scheme, whereby only gateways are administered with fixed (static) IP addresses. The other network devices automatically fetch their network configuration (IP address, subnet mask, DNS) from a DHCP server, like the one in the COM-5404.

For example, a PC running Microsoft's Windows operating system would be configured as per the right panel:

Internet Protocol Version 4 (TCP/IPv4) Properties							?	×				
Ge	eneral	Alterna	ite Confi	guration								
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.												
Obtain an IP address automatically												
l í	🔘 Us	e the fo	llowing If	P addres	s:							
	IP ac	ldress:					γ.,		1.			
	Subn	et mask							1.			
	Defa	ult gate	Nay:									
	() Ob	tain DN	S server	address	autom	atical	y					
1	O Us	e the fo	llowing D	INS serve	er addi	resses						
	Prefe	erred DN	5 server									
	Alter	nate DN	S server	:			e.		1			
	V	alidate s	ettings u	ipon exit					Ad	vanced		
								OK		Ca	ncel	

ComBlock Compatibility List

FPGA development platform
COM-1500 FPGA + DDR2 SODIMM socket + ARM development platform
COM-1700 Low-power compact development Platform FPGA + ARM + DACs + ADCs + VGA +
GbE LAN + USB2+ NAND + TCXO + RS422
Network adapter
COM-5401 4-port 10/100/1000 Mbps Ethernet Transceivers
COM-5102 Gigabit Ethernet + HDMI interface
Software
COM-5401SOFT Tri-mode 10/100/1000 Mbps Ethernet MAC. VHDL source code.

ComBlock Ordering Information

COM-5404SOFT IP ROUTER GATEWAY & DHCP SERVER for GbE, VHDL SOURCE CODE

ECCN: 5D991

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 E-mail: sales@comblock.com

LAN = Local Area Network WAN = Wide Area Network M&C = Monitoring & Control