
COM-5502SOFT
IP/TCP SERVER/UDP/ARP/PING STACK for
10GbE
VHDL SOURCE CODE OVERVIEW

Overview
10Gigabit-speed IP protocols like TCP/IP and
UDP/IP can demand a high level of computation on
processors. The trend has been to move the
implementation of these fast but highly repetitive
tasks to a TCP offload engine (TOE) to free the
application processor from frequent interrupts.

The COM-5502SOFT is a generic Internet protocol
stack (including the VHDL source code) designed
to support near 10Gbps throughputs on any low-
cost FPGAs running at 156.25 MHz.

The modular architecture of VHDL components
reflects the various internet protocols implemented
within: TCP servers1, UDP transmit, UDP receive,
ARP, NDP, PING, IGMP (for multicast UDP),
DHCP server and DHCP client. Ancillary
components are also included for streaming. These
components can be easily enabled or disabled as
needed by the user's application.

The VHDL source code is fully portable to a variety
of FPGA platforms.

The maximum number of concurrent TCP
connections can be adjusted prior to VHDL
synthesis depending on the available FPGA
resources.

The code is written specifically for IEEE 802.3
Ethernet packet encapsulation (RFC 894). It
supports IPv4, IPv6, jumbo frames.

The code interfaces seamlessly with the
COM-5501SOFT 10Gbps Ethernet MAC for the
MAC / PHY layers implementation or the
COM-5401SOFT 10/100/1000 Mbps Ethernet
MAC. However, the MAC interface is generic and

1 See COM-5503SOFT for TCP clients.

simple enough to interface with any Ethernet MAC
component with minimum glue logic.

Wireshark Libpcap network capture files can be
used as receiver input for simulation purposes.

Block Diagram

PACKET
PARSING

ARP
REPLY

PING
REPLY

ARP/NDP
REQUEST

ROUTING
TABLE

UDP_RX

TCP
SERVERS

UDP_TX

STREAMS TO
PACKETS

PACKETS TO
STREAMS

TCP_RXBUF

TCP_TXBUF

TCP_TX

APPLICATION
INTERFACE

MAC
INTERFACE

190009

Arbitration
10Gb MAC
Transmit
Interface

10Gb MAC
Receive
Interface

IGMP

NEIGHBOR
DISCOVERY

DHCP
SERVER

DHCP
CLIENT

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2021 Issued 1/23/2021

http://www.mobile-sat.com/

Target Hardware
The code is written in generic VHDL so that it can
be ported to a variety of FPGAs capable of running
at 156.25 MHz or above.

Device Utilization Summary
(Excludes 10G Ethernet MAC and XAUI)
Device: Xilinx Artix-7

UDP-only:
1 UDP rx, 1 UDP tx,
0 TCP server, ARP,
Ping, routing table,
IPv4 only, 8KB
UDP tx buffer

Flip Flops 3198
LUTs 2740
36Kb block RAM 7.5
DSP48 0

TCP IPv4 only:
0 UDP rx, 0 UDP tx,
1 TCP server, ARP,
Ping, routing table,
IPv4 only, MTU
1500, 32KB TCP
buffers

Flip Flops 3515
LUTs 3855
36Kb block RAM 26
DSP48 0

TCP IPv4 only:
0 UDP rx, 0 UDP tx,
2 TCP servers, ARP,
Ping, routing table,
IPv4 only, 32KB
TCP buffers

Flip Flops 4255
LUTs 5174
36Kb block RAM 41
DSP48 0

1 UDP rx, 1 UDP tx,
1 TCP server, ARP,
Ping, NDP, routing
table, IPv4. IPv6,
32KB TCP buffers

Flip Flops 7293
LUTs 9215
36Kb block RAM 32.5
DSP48 0

2

TCP Throughput
The TCP throughput is primarily a function of the
tx/rx buffers sizes and of the two-way delay. For
example, if the two way delay (NIC + FPGA) is
90us
Buffers sizes TCP throughput
2kB 133 Mbits/s
8kB 673 Mbits/s
32kB 2.8 Gbits/s
64kB 5.56 Gbits/s
128kB 9.3 Gbits/s
256kB 9.3 Gbits/s

If the two-way delay is only 45us, the same TCP
throughput can be achieved with half-sized buffers.

The buffer size is determined prior to synthesis by
the generic parameters
TCP_TX/RX_WINDOW_SIZE

Throughput Performance Examples
UDP
IPv4 UDP throughput using 512-Byte data frames:
8.64 Gbits/s

IPv4 UDP throughput using 2048-Byte data frames:
9.62 Gbits/s

TCP
IPv4 TCP single server, uni-directional stream,
MTU = 1500 Bytes, equal length maximum size IP
frames:
9.38 Gbits/s

TCP
IPv6 TCP single server, uni-directional stream,
MTU = 1500 Bytes, equal length maximum size IP
frames:
9.23 Gbits/s

IPv4 TCP single server, bi-directional streams,
MTU = 1500 Bytes
8.82 Gbits/s in each direction

IPv4 TCP single server, uni-directional stream,
MTU = 8252 Bytes, equal length maximum size IP
frames, buffer size = 32K Bytes:
9.88 Gbits/s

IPv6 TCP single server, uni-directional stream,
MTU = 8252 Bytes, equal length maximum size IP
frames, buffer size = 32K Bytes:
9.86 Gbits/s

3

TCP Latency Performance Examples

The transmit and receive latency depend on the
frame length. For a maximum frame length of 1460
bytes, FPGA 156.25 MHz processing clock:

 Transmit latency (from the 1st byte of
payload data input to the 1st byte of
payload data output to the Ethernet MAC):
23.9µs

 Receive latency (from the 1st byte of
Ethernet MAC input to the 1st byte of
payload data output): 12.2µs

If latency is more important than throughput, the
transmit segmentation threshold can be reduced to
X payload bytes. In this more general case,

 Transmit latency (from the 1st byte of
payload data input to the 1st byte of
payload data output to the Ethernet MAC):
0.5 + 2X/125 µs

The receive latency (from the 1st byte of Ethernet
MAC input to the 1st byte of payload data
output): 0.5 + X/125 µs

Interfaces

CLK
SYNC_RESET
MAC_TX_DATA(63:0)
MAC_TX_DATA_VALID(7:0)
MAC_TX_SOF
MAC_TX_EOF
MAC_TX_CTS
MAC_TX_RTS

MAC_RX_DATA(63:0)
MAC_RX_DATA_VALID(7:0)
MAC_RX_SOF
MAC_RX_EOF
MAC_RX_FRAME_VALID

MAC TX
DATA

CONTROLS

UDP_RX_DATA(63:0)
UDP_RX_DATA_VALID(7:0)

UDP_RX_SOF
UDP_RX_EOF

UDP_RX_FRAME_VALID

UDP_RX_DEST_PORT_NO_IN(15:0)
CHECK_UDP_RX_DEST_PORT_NO

UDP_RX_DEST_PORT_NO_OUT(15:0)

UDP_TX_DATA(63:0)
UDP_TX_DATA_VALID(7:0)

UDP_TX_SOF
UDP_TX_EOF
UDP_TX_CTS
UDP_TX_ACK
UDP_TX_NAK

UDP_TX_DEST_IP_ADDR(127:0)
UDP_TX_DEST_IPv4_6n

TCP_RX_DATA (63:0)
TCP_RX_DATA_VALID(7:0)

TCP_RX_RTS
TCP_RX_CTS

TCP_RX_CTS_ACK
TCP_LOCAL_PORTS

TCP_TX_DATA(63:0)
TCP_TX_DATA_VALID(7:0)

TCP_TX_DATA_FLUSH
TCP_TX_CTS

TCP_CONNECTED_FLAG

CONNECTION_RESET
TCP_KEEPALIVE_EN

UDP RX
DATA

MAC INTERFACE

180013

MAC RX
DATA

APP INTERFACE

UDP TX
DATA

REPLICATED
NTCPSTREAMS
TIMES

TCP RX
DATA

REPLICATED
NTCPSTREAMS
TIMES

TCP TX
DATA

MAC_ADDR(47:0)
IPv4_ADDR(31:0)
IPv4_MULTICAST_ADDR(31:0)
IPv4_SUBNET_MASK(31:0)
IPv4_GATEWAY_ADDR(31:0)
IPv6_ADDR(127:0)
IPv6_SUBNET_PREFIX_LENGTH(7:0)
IPv6_GATEWAY_ADDR(127:0)

Component Interface
This interface comprises three primary signal
groups:

 MAC interface (direct connection to COM-
5501SOFT Ethernet MAC or equivalent)

 TCP streams
 UDP frames or UDP streams to/from the

user application.

All signals are clock synchronous. See the
clock/timing section.

4

Configuration
The key configuration parameters are brought to the
interface so that the user can change them
dynamically at run-time. Other, more arcane,
parameters are fixed at the time of VHDL synthesis.

Pre-synthesis configuration parameters

The following configuration parameters are set
prior to synthesis in the com5502pkg.vhd package
or at the top level component com5502.vhd.
Configuration
parameters in
com5502pkg.vhd

Description

Maximum number
of concurrent TCP
streams

NTCPSTREAMS_MAX.
This applies to all COM5502
components instantiated in a
project. It primarily affects the data
width of the TCP interface.

Configuration
parameters in
com5502.vhd

Description

Number of
concurrent TCP
streams for a given
COM5502
instance.

NTCPSTREAMS
This applies to a given COM5502
instance.
Each additional TCP stream
requires additional resources
(RAM block, logic).

UDP transmit
instantiation

NUDPTX
instantiated (1) / disabled (0)
Note: a component handles
multiple ports.

UDP receive
instantiation

NUDPRX
instantiated (1) / disabled (0)
Note: a component handles
multiple ports

Enable IPv6
protocols

IPv6_ENABLED
'1' to allow IPv6 protocols in
addition to the baseline IPv4.
'0' to ignore IPv6 messages.

MTU size MTU
Maximum Transmission Unit: IP
frame maximum byte size.
-- Typically 1500 for standard
frames, 9000 for jumbo frames.
-- A frame will be deemed invalid
if its payload size exceeds this
MTU value.
-- Should match the values in
MAC layer)
-- elastic buffers at the user
interface should be sized to contain
at least 4 IP frames payload. See
ADDR_WIDTH generic
parameter.

TCP buffers
sizes

TCP_TX_WINDOW_SIZE
TCP_RX_WINDOW_SIZE
Window size is expressed as 2**n Bytes.
Thus a value of 15 indicates a window
size of 32KB. This generic parameter
determines how much memory is
allocated to buffer tcp streams. It applies
equally to all concurrent streams (no
individualization).
Purpose: tradeoff memory utilization vs
throughput.
Memory size ranges from 2KB (multiple
streams/lower individual throughput) to
1MB (single stream/maximum
throughput)
The window scale option is
recommended on the client side when
this server's buffers are larger than
64KB.

DHCP
server
instantiation

DHCP_SERVER_EN
instantiated (1) / disabled (0)
The DHCP server assigns dynamic IPv4
addresses to DHCP clients from a pool of
local IPv4 addresses.

DHCP client
instantiation

DHCP_CLIENT_EN
‘1’ to instantiate a DHCP client within.
DHCP is a protocol used to dynamically
assign IP addresses at power up from
remote DHCP servers, like a gateway.
’0’ when a fixed (static) IP address is
defined by the user.

One can instantiate both DHCP server
and DHCP client at the same time, but
not enable them simultaneously

IGMP
instantiation

IGMP_EN
instantiated (1) / disabled (0)
Enable when using UDP multicast
addresses

Inactive
input stream
timeout

TX_IDLE_TIMEOUT When segmenting
a TCP transmit stream, a packet will be
sent out with pending data if no new data
was received within the specified
timeout.
Expressed as integer multiple of 4s.

TCP keep-
alive period

TCP_KEEPALIVE_
PERIOD
period in seconds for sending no data
keepalive frames.

"Typically TCP Keepalives are sent
every 45 or 60 seconds on an idle TCP
connection, and the connection is
dropped after 3 sequential ACKs are
missed"

CLK
frequency

CLK_FREQUENCY
CLK frequency in MHz. Needed to
compute actual delays.

5

Configuration
parameters in
ping_10g.vhd

Description

Maximum ping size MAX_PING_SIZE
maximum IP/ICMP size
(excluding Ethernet/MAC, but
including the IP/ICMP header)
in 64-bit words. Larger echo
requests will be ignored. The
ping buffer contains up to
18Kbits total (for a queued
IP/ICMP response waiting for
the tx path to become available)

Configuration
parameters in
arp_cache2.vhd

Description

Routing table refresh
period

REFRESH_PERIOD(19:0)
Refresh period for this routing
table. Expressed as an integer
multiple of 100ms. Default value
is 3000 (5 minutes).

Configuration
parameters in
tcp_txbuf_10G.vh
d
tcp_rxbufndemux2
_10G.vhd

Description

Elastic buffer size ADDR_WIDTH
Specifies the elastic buffer size
for each stream. Data width is
fixed at 8 bytes. Thus
ADDR_WIDTH = 11 indicates a
buffer size of 128 Kbits.
Maximum value = 12 (256Kbits)
Note that the buffer size must be
large enough to store two
complete IP frames payloads
(see MTU above).

Configuration
parameters in
udp_tx_10g.vhd

Description

UDP checksum
enable
(IPv4)

UDP_CKSUM_ENABLED
Enable (1) / Disable (0) UDP
checksum computation for IPv4.
Objective is to save FPGA
resources.

6

Configuration
parameters in
stream_2_packets_10g.
vhd

Description

Maximum packet size
when segmenting a stream
to packets

MAX_PACKET_SIZE
When segmenting a
transmit stream, a packet
will be sent out as soon as
MAX_PACKET_SIZE
bytes are collected.
The recommended size is
512 bytes for a low
overhead.

Retransmission timer TX_RETRY_TIMEOUT
A re-transmission attempt
will be made periodically
until routing information is
available and the transmit
path to the MAC is
available. The retry period
is expressed as an integer
multiple of 4s.

Run-time configuration parameters

The user can set and modify the following controls
at run-time. All controls are
synchronous with the user-supplied
global CLK.

Run-time configuration Description
MAC address
MAC_ADDR(47:0)

This network node 48-bit
MAC address. The user is
responsible for selecting a
unique ‘hardware’ address
for each instantiation.

Natural bit order: enter
x0123456789ab for the
MAC address
01:23:45:67:89:ab
It is essential that this input
matches the MAC address
used by the MAC/PHY.

Dynamic vs static IP
DYNAMIC_IP

‘1’ for dynamic addressing
‘0’ for static IP address.
The device IP address can
be assigned dynamically by
an external DHCP server, or
defined as static address by
the user.
Dynamic addressing
requires instantiating a
DHCP client: set the generic
parameter
DHCP_CLIENT_EN = ‘1’.

IPv4 address
REQUESTED_IPv4_ADDR
(31:0)

Static address when
DYNAMIC_IP = ‘0’
Last dynamically assigned
address when DYNAMIC_IP
= ‘1’.
Address 0.0.0.0 can also be
used in conjunction with
dynamic addressing if the
user does not ‘remember’
the last dynamic IP address.
4 bytes for IPv4. Byte order:
(MSB)192.68.1.30(LSB)

IPv4 Subnet Mask
IPv4_SUBNET_MASK(31:0)

Subnet mask to assess
whether an IP address is
local (LAN) or remote
(WAN)
Byte order:
(MSB)255.255.255.0(LSB)

Ignored when the DHCP
client feature is enabled, as
the DHCP server provides
the subnet mask.

IPv4 Gateway IP address
IPv4_GATEWAY
_ADDR(31:0)

One gateway through which
packets with a WAN
destination are directed.
Byte order:

7

(MSB)192.68.1.1(LSB)

Ignored when the DHCP
client feature is enabled, as
the DHCP server provides
the gateway information.

IPv4 Multicast address
IPv4_MULTICAST
_ADDR(31:0)

to receive UDP multicast
messages. One multicast
address only. 0.0.0.0 to
signify that IP multicasting
is not supported here.

IGMP must be instantiated
to declare that this node
belongs to a multicast
group.

IPv6 address
IPv6_ADDR(127:0)

Local IP address. 16 bytes
for IPv6.
Byte order example:
(MSB)FE80::
0102:0304:0506:0708(LSB)

IPv6 Subnet Prefix Length
IPv6_SUBNET_PREFIX
_LENGTH (7:0)

Valid range 64-128

IPv6 Gateway IP address
IPv6_GATEWAY
_ADDR(127:0)

One gateway through which
packets with a WAN
destination are directed.
Must be on the same local
network as this device.

TCP_KEEPALIVE_EN Keep-alive is a mechanism
to detect when a TCP
connection is interrupted.
Keep-alive messages are
sent periodically. Three
missed keep-alive messages
cause a TCP reset.
Enable (1)/ Disable (0) for
each stream.

Throughout this document CTS and RTS refer to
flow control signals "Clear To Send" and "Ready
To Send" respectively. CTS is generated by the data
sink to indicate it can process and/or store incoming
data. RTS is generated by the data source to
indicate that data bits are available, should the data
sink raise its CTS flag.

UDP-Application Interface
UDP transmit interface
UDP transmit word
UDP_TX_DATA (63:0)

Input: send 0 to 8 bytes.
Byte order: MSB first (easier
to read contents during
simulation).
Unused bytes are expected to
be zeroed.

UDP data valid
UDP_TX_DATA_VALID
(7:0)

Input. Indicates the
meaningful bytes in
UDP_TX_DATA.
0xFF for 8 bytes, 0x80 for one
byte, 0xC0 for two bytes, etc.

UDP_TX_SOF
UDP_TX_EOF

Inputs. 1 CLK wide markers
to delineate the frame
boundaries.
SOF = Start Of Frame
EOF = End Of Frame
Must be aligned with
UDP_TX_DATA_VALID

Flow control
UDP_CTS

Output
‘1’ = Clear To Send
‘0’ = input buffer is nearly
full. Do not send more data.

The user must check the
Clear-To-Send flag before
sending additional data. The
timing is not precise (it is safe
to send data for a few clocks
after CTS goes low), thanks to
an input elastic buffer.

Transmission
acknowledgements
UDP_TX_ACK
UDP_TX_NAK

Outputs
UDP_TX_ACK:
1 CLK-wide pulse indicating
that the previous UDP frame
was successfully sent.

UDP_TX_ACK
1 CLK-wide pulse indicating
that the previous UDP frame
could not be sent (destination
not present for example).

USAGE: wait until the
previous UDP tx frame
UDP_TX_ACK or
UDP_TX_NAK to send the
follow-on UDP tx frame

8

UDP receive interface
UDP rx word
UDP_RX_DATA(63:0)

Output. Receive 0 to 8 bytes.
Byte order: MSB first (easier
to read contents during
simulation)
All words in a frame contain
8 bytes, except the last word
which may contain fewer.

UDP rx data valid
UDP_RX_DATA_VALID
(7:0)

Output. Indicates the
meaningful bytes in
UDP_RX_DATA.
0xFF for 8 bytes, 0x80 for one
byte, 0xC0 for two bytes, etc.

Start Of Frame / End Of
Frame
UDP_RX_SOF
UDP_RX_EOF

Outputs. 1 CLK wide markers
to delineate the frame
boundaries.
SOF = Start Of Frame
EOF = End Of Frame.
Aligned with
UDP_RX_DATA_VALID

UDP_RX_FRAME_VALID Output. The frame validity
UDP_RX_FRAME_VALID is
displayed at the end of frame
when UDP_RX_EOF = '1'

The user is responsible for
discarding bad frames.

Always check
UDP_RX_FRAME_VALID at
the end of packet
UDP_RX_EOF = '1') to confirm
that the UDP packet is valid.
External buffer may have to
backtrack to the the last
valid pointer to discard an
invalid UDP packet.
Reason: we only knows about
bad UDP packets at the end.

CHECK_UDP_RX_
DEST_PORT_NO

Input. '1' when the COM5502
component filters out UDP
frames sent to a destination
port other than the user-
specified
UDP_RX_DEST_PORT_NO_
IN

'0' when UDP frames with any
destination port (but with the
right IP address) are passed to
the user.

UDP_RX_DEST_PORT
_NO_IN

Input. User-specified UDP rx
destination port (enabled when
CHECK_UDP_RX_
DEST_PORT_NO = '1'

TCP-Application Interface
Prior to synthesis, one must configure the following
constants:

 The maximum number of TCP servers
NTCPSTREAMS_MAX in com5502.pkg.
This limit applies to all instantiated
COM5502 components in a project:

 The number of TCP servers
NTCPSTREAMS for a given COM5502
instance, as declared in the generic section.

TCP receive interface (for TCP connection # I)
TCP local port
TCP_LOCAL_
PORTS(I)(15:0)

Input. TCP_SERVER port
configuration. Each one of the
NTCPSTREAMS streams
handled by this
component must be
configured with a distinct port
number.
This value is used as
destination port number to
filter incoming packets, and
as source port number in
outgoing packets.

TCP rx word
TCP_RX_DATA(I)(63:0)

Output. Receive 0 to 8 bytes.
Byte order: MSB first (easier
to read contents during
simulation)

TCP rx data valid
TCP_RX_DATA_VALID
(I) (7:0)

Output. Indicates the
meaningful Bytes in
TCP_RX_DATA.
0xFF for 8 Bytes, 0x80 for
one Byte, 0xC0 for two Bytes,
etc.

Partially filled words can
remain at the interface for
several clock periods until the
remaining word bytes are
received.

However, when the received
word is full (0xFF), it stays at
the interface for one and only
one clock.

Ready To Send
TCP_RX_RTS(I)

Output.
Usage: TCP_RX_RTS goes
high when at least one byte is
in the output queue (i.e. not
yet visible at the output
TCP_RX_DATA). The
application should then raise
TCP_RX_CTS for one clock to
fetch the next word 2 CLKs
later.

9

Note that the next word may
be partial (<8 bytes) or full.

Flow control: Clear To
Send TCP_RX_CTS(I)

Input.
Flow control signal. '1' to
indicate that the user is ready
to accept the next TCP rx
word. This signal can be
pulsed or continuous.

The latency between
TCP_RX_CTS and
TCP_RX_DATA_VALID is two
clocks.

This Clear-To-Send signal
can remain '1' if the
application is capable of
handling the high throughput.
The code will ignore this
TCP_RX_CTS signal when
no new data is being received.

The TCP interface is replicated NTCPSTREAMS
times, depending on the number of connections
implemented.

See the TCP receive interface timing section for
details.

DHCP Server Application Interface
When instantiated, the DHCP server assigns IPv4
addresses dynamically to DHCP clients requesting
an IPv4 address. The addresses are taken from a
pool of DHCP_SERVER_NIPs consecutive
addresses starting at address with least significant
byte DHCP_SERVER_IP_MIN_LSB. The address
is leased for DHCP_SERVER_LEASE_TIME
seconds. The DHCP client is expected to renew the
lease before it expires. Together with the leased
IPv4 address, the DHCP server also provides the
client with IP addresses for the WAN router
(DHCP_ROUTER) , its subnet mask and a DNS
(DHCP_SERVER_DNS).

DHCP server configuration
DHCP_SERVER
_EN2

Input. Enable the DHCP server at
run-time. It only applies if the
DHCP server is instantiated.
Mutually exclusive with
DYNAMIC_IP (chose DHCP
client OR server, but not both)

DHCP_SERVER_IP
_MIN_LSB

LSB of first address in the DHCP
server pool of IPv4 addresses.

DHCP_SERVER_NIPs Number of IPv4 addresses in the
DHCP server pool. Maximum of
128 entries.

For example, if IPv4_ADDR =
172.16.1.3, IP_MIN = 10, NIPs
= 10, the DHCP server will
assign and keep track of IP
addresses in the range
172.16.1.10 and 172.16.1.19
(inclusive).

Limitations
This software does not support the following:

- IEEE 802.3/802.2 encapsulation, RFC
1042, only the most common Ethernet
encapsulation.

Only one gateway is supported at any given time.

Software Licensing
The COM-5502SOFT is supplied under the
following key licensing terms:

1. A nonexclusive, nontransferable
corporate/organization license to use the
VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bitstream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicense.pdf

10

http://www.comblock.com/download/softwarelicense.pdf

Configuration Management
The current software revision is 0.

Directory Contents

/project_1 Xilinx Vivado 2017.4 project

/doc Specifications, user manual,
implementation documents

/src .vhd source code, .ucf constraint files,
.pkg packages.
One component per file.

/sim Testbenches, Wireshark capture files as
simulation stimulus

/bin .bit configuration file for use with COM-
1800/COM-5104 hardware modules.

/use_example Source code for use with COM-
1800/COM-5104 hardware modules

Test components (stream to packets
segmentation, etc) are in directory
 \use_example\src

Key project file:

Xilinx ISE project file: com-5502_ISE14.xise

VHDL development environment
The VHDL software was developed using the
following development environment:

(a) Xilinx Vivado 2017.4 as synthesis tool

(b) Xilinx Vivado 2017.4 as VHDL simulation
tool

For best FPGA place and route timing, the
recommended Xilinx Vivado synthesis settings are
the default + keep equivalent registers + no
resource sharing.

Ready-to-use Hardware
Use examples are available to run on the following
Comblock hardware modules:

 COM-1800 FPGA (XC7A100T) + ARM +
DDR3 SODIMM socket + GbE LAN
development platform
http://www.comblock.com/com1800.html

 ComBlock COM-5104 10G Ethernet
network interface (SFP+ connector to 4-
lane XAUI to FPGA)
http://www.comblock.com/com5104.html

All hardware schematics are available online at
comblock.com/download/com_1800schematics.pdf
comblock.com/download/com_5104schematics.pdf

Acronyms
Directory Contents

ARP Address Resolution Protocol (only for IPv4)

CTS Clear To Send (flow control signal)

DNS Domain Name Server

EOF End Of Frame

LAN Local Area Network

LSB Least Significant Byte in a word

MSB Most Significant Byte in a word

MTU Maximum Transmission Unit (frame length)

NDP Neighbor Discovery Protocol

RX Receive

RTS Ready To Send (flow control signal)

SOF Start Of Frame

TCP Transmission Control Protocol

TX Transmit

UDP User Datagram Protocol

WAN Wide-Area Network

11

http://www.comblock.com/com5104.html
http://www.comblock.com/com1800.html

 Top-Level VHDL hierarchy

The code is stored with one, and only one,
component per file.

The root entity (highlighted above) is
COM5502.vhd. It contains instantiations of the IP
protocols and a transmit arbitration mechanism to
select the next packet to send to the MAC/PHY.

The root also includes the following components:

- The PACKET_PARSING_10G.vhd
component parses the received packets
from the MAC and efficiently extracts key
information relevant for multiple protocols.
Parsing is done on the fly without storing
data. Instantiated once.

- The ARP_10G.vhd component detects ARP
requests and assembles an ARP response
Ethernet packet for transmission to the
MAC. Instantiated once. ARP only applies
to IPv4. For IPv6, use neighbour discovery
protocol instead.

- The DHCP_SERVER_10G.vhd component
manages a pool of IPv4 addresses. It
assigns them dynamically to DHCP clients
upon request. The server also supplies the

subnet mask, the gateway address and a
DNS address.

- The DHCP_CLIENT_10G.vhd component
requests an IPv4 address from a remote
DHCP server when dynamic addressing is
selected. The server also supplies the
subnet mask, the gateway address and a
DNS address.

- The IGMP_REPORT_10G.vhd component
sends an IGMP membership report to
declare this network node as belonging to a
multicast group. The IGMP_QUERY.vhd
component responds to membership
queries.

- The ICMPV6_10G.vhd component detects
incoming IP/ICMPv6 neighbor solicitations
on the fly and responds with the local MAC
address information.

- The PING_10G.vhd component detects
ICMP echo (ping) requests and assembles a
ping echo Ethernet packet for transmission
to the MAC. Instantiated once. Ping works
for both IPv4 and IPv6.

- The WHOIS2_10G.vhd component
generates an ARP request broadcast packet
(IPv4) or a Neighbor solicitation message
(IPv6) requesting that the target identified
by its IP address responds with its MAC
address.

- The ARP_CACHE2_10G.vhd component is
a shared routing table that stores up to 128
IP addresses with their associated 48-bit
MAC addresses and a ‘freshness’
timestamp. This component determines
whether the destination IP address is local
or not. In the latter case, the MAC address
of the gateway is returned. Only records
regarding local addresses are stored (i.e. not
WAN addresses since these often point to
the router MAC address anyway). An
arbitration circuit is used to arbitrate the
routing request from multiple transmit
instances. Instantiated once.

- The flexible UDP_TX_10G.vhd component
encapsulates a data packet into a UDP
frame addressed from any port to any
port/IP destination. Supports both IPv4 and
IPv6. Generally instantiated once,
irrespective of the number of source or
destination UDP ports. However, multiple

12

instantiations can easily be implemented by
modifying the COM5502.vhd top level
code (search for the TX_MUX_00x and
RT_MUX_00x processes). Multiple
instances are useful when multiple UDP
sources need transmit arbitration to prevent
collisions.

- The UDP_RX_10G.vhd component
validates received UDP frames and extracts
the data packet within. As the validation is
performed on the fly (no storage) while
received data is passing through, the
validity confirmation is made available at
the end of the packet. The calling
application is therefore responsible for
discarding packets marked as 'invalid' at the
end. See PACKETS_2_STREAM_10G.vhd
for assistance in discarding invalid packets.
Instantiated once, irrespective of the
number of UDP ports being listened to.

- The TCP_SERVER_10G.vhd component is
the heart of the TCP protocol. It is written
parametrically so as to support
NTCPSTREAMS concurrent TCP
connections. It essentially handles the TCP
state machine of a TCP server: initially
listening for connection requests from
remote TCP clients, establishing and
tearing down the connections and managing
flow control and byte ordering while the
connections are established. Since this is a
server, it does not know a priori whether
the protocol is IPv4 or IPv6 (it depends on
the client), so each server is given two IP
addresses, one for each IP version.

- The TCP_TX_10G.vhd component formats
TCP tx frames, including all layers: TCP,
IP, MAC/Ethernet. It is common to all
concurrent streams and is thus instantiated
once.

- The TCP_TXBUF_10G.vhd component
stores TCP tx payload data in individual
elastic buffers, one for each transmit
stream. The buffer size is configurable prior
to synthesis through the ADDR_WIDTH
generic parameter.

- The TCP_RXBUFNDEMUX_10G.vhd
component demultiplexes several TCP rx
streams. This component has two
objectives: (1) tentatively hold a received
TCP frame on the fly until its validity is

confirmed at the end of frame. Discard if
invalid or further process if valid.
(2) demultiplex multiple TCP streams,
based on the destination port number.

Additional components are also provided for use
during system integration or tests.

- STREAM_2_PACKETS_10G.vhd segments
a continuous data stream into packets. The
transmission is triggered by either the
maximum packet size or a timeout waiting
for fresh stream bytes.

- PACKETS_2_STREAM_10G.vhd
reassembles a data stream from received
valid packets while discarding invalid
packets. The packet’s validity is assessed at
the end of packet. It is designed to connect
seamlessly with the TCP_RX.vhd
component.

- LFSR11P64.vhd is a pseudo-random
sequence generator used for test purposes.
It generates a PRBS11 test sequence
commonly used for bit error rate testing at
the receiving end of a transmission channel.
The 64-bit wide output allows for high-
speed operation (10 Gbits/s).

- BER64.vhd is a bit error rate tester
expecting to receive a PRBS11 test
sequence. It synchronizes with the received
bit stream and count errors over a user-
defined window. The 64-bit wide output
allows for high-speed operation (10
Gbits/s).

13

VHDL simulation
Test benches are provided for HDL simulation of
UDP transmit, UDP receive.

Several test benches use Wireshark Libpcap
network capture files as stimulus. See Libcap File
Player

For TCP server simulation, a TCP client simulator
is needed (not supplied), because of the interactive
nature of the TCP protocol. The COM-5502SOFT +
COM-5503SOFT bundle allows the comprehensive
TCP server - TCP client simulation.

The testbenches (tb*.vhd) are located in the /sim
directory

Quick start:
In the Xilinx Vivado, open a .xpr project. The
available testbenches are displayed as illustrated
below. Start the simulator. In the simulator, open
the stored .wcfg configuration file which bears the
same name as the testbench.

Clock / Timing

The COM-5502SOFT can connect to 10G Ethernet
MAC as well as to lower-speed 10/100/1000Mbps
Ethernet MAC without any code change. However,
the clock domains are different, as illustrated by the
two use-cases below.

10G IP
STACK

10G
ETHERNET
MAC

USER
APPLICATIONXAUI

DPRAM

DPRAM

10G
PHY

180008

4*
3.125Gbps

156.25 MHz clock domain

10G IP
STACK

USER
APPLICATION

10/100/1000
PHY

180008

user clock domain

user clock domain

DPRAM

DPRAM

10/100/1000 Mbps
ETHERNET
MAC

125/25/2.5MHz clock domain

At 10G speed, the COM-5502SOFT uses the same
156.25 MHz clock as the 10G Ethernet MAC. If the
user application uses a different clock, dual-port
RAMs must be used to cross the clock domain

When the COM-5502SOFT is connected with the
lower-speed 10/100/1000 Mbps tri-mode Ethernet
MAC, dual-port RAMs within the Ethernet MAC
are used to cross the clock domains. The COM-
5502SOFT can then use the same clock as the user
application.

The COM-5502SOFT code is written to run at
156.25 MHz on a Xilinx Artix7 -1 speed grade with
2 concurrent TCP streams instantiated.

14

https://comblock.com/zc/index.php?main_page=advanced_search_result&search_in_description=1&keyword=com-5502softbundleupgrade
https://comblock.com/zc/index.php?main_page=advanced_search_result&search_in_description=1&keyword=com-5502softbundleupgrade

UDP Receive Latency
In order to minimize the latency, UDP payload
bytes are forwarded directly to the user application
interface with only a partial validation. This allows
the application to start processing the UDP payload
data without delay since frame errors are very rare.
However, the complete validation information is
only available at the end of the UDP frame
(UDP_RX_EOF). The user application is
responsible to discarding invalid frames based upon
the UDP_RX_FRAME_VALID confirmation.

Validation checks performed prior to the first UDP
payload word (UDP frame is not forwarded to the
user application if any of these checks fail):

 IP datagram

 Destination IP address

 IPv4 header checksum

 UDP protocol

 Destination UDP port (when enabled)

Validation checks performed at the end of UDP
frame (user is responsible for discarding the frame
if any of these checks fail):

 UDP checksum

TCP Receive Latency

In the baseline code, the TCP receive payload data
goes through the TCP_RXBUFNDEMUX2_10G.vhd
component which conveniently discards bad frames
and packs payload data into neat 64-bit words.

The 'price to pay' for this convenience is a delay
which can be significant as the user application is
notified of valid payload bytes at the end of an IP
frame.

Alternative lower-latency method:

When low-latency is a priority, the
TCP_RXBUFNDEMUX2_10G.vhd component may be
bypassed (requires minor code editing). In this case,
the user application is responsible to discarding
invalid frames based upon the
RX_FRAME_VALID confirmation at the end of
frame RX_EOF.

Validation checks performed prior to the first TCP
payload word in an IP frame (TCP payload data is
not forwarded out to the user application if any of
these checks fail):

 IP datagram

 Destination IP address

 IPv4 header checksum

 TCP connection

 TCP protocol

 Destination TCP port

 No gap in received sequence

 Non-zero data length

 Originator is identified (no spoofing)

Validation checks performed at the end of TCP
frame (user is responsible for discarding the frame
if any of these checks fail):

 TCP checksum

Troubleshooting

1. PC cannot ping or receive UDP frames or
establish a TCP connection.

15

One likely cause may be Windows security.
Declaring the network adapter as a "Private
Network" makes it easier to access the FPGA board
from the PC.

One method is to define the default gateway field in
the network adapter IPv4 configuration as the
FPGA board IPv4 address .

16

TCP receive interface timing (simple)
The receive interface for TCP and UDP are somewhat different. Each TCP stream stores the receive data in an
independent output buffer.

Read each full 8-Byte word APP_RX_DATA(63:0) when the word is full, that is when
APP_RX_DATA_VALID = xFF for one CLK.

Regulate the receive throughput using the "Clear-To-Send' SIGNAL APP_RX_CTS: '1' to enable, '0' to stop.

Partially-filled output words are available at the interface, as indicated by APP_RX_DATA_VALID = x80 (1
Byte), xC0 (2 Bytes), xFE (7 Bytes). The partial output words can stay at the interface for extented periods,
that is until the 8-Byte output word is completely filled.

To summarize, the simple rules for reading TCP data are as follows:

if(TCP_RX_DATA_VALID = x"FF") then
-- READ complete 8-byte word
OUTPUT <= TCP_RX_DATA(63:0);

elsif(TCP_RX_DATA_VALID /= x"00") then
-- LOOK/PEEK at a PARTIAL word TCP_RX_DATA, filled MSB first
-- The complete 8-byte word will be available later at the next occurrence
-- of (TCP_RX_DATA_VALID = x"FF")
PEEK <= TCP_RX_DATA(63:?)

end if;

-- TCP_RX_CTS can stay high all the time, unless the data flow is too high
-- TCP_RX_RTS and TCP_RX_CTS_ACK are generally for monitoring purposes

TCP receive interface timing (detailed)
The application controls the output rate through TCP_RX_CTS (Clear-To-Send) pulses. One TCP_RX_CTS
pulse will fetch the next word as long as it contains at least one Byte. The TCP_RX_RTS goes high when at
least one Byte is unread in the output buffer. Thus the application should do the following:

1. Check TCP_RX_RTS until it indicates data hidden in the output buffer
2. Send a APP_RX_CTS pulse (1 clock wide)
3. Get the data Byte(s) in APP_RX_DATA(63:0). The number of Bytes available is shown in

APP_RX_DATA_VALID(7:0)
4. Wait until the output word is full (TCP_RX_DATA_VALID(7:0) = xFF) to get the full word

contents. Filling the output word with incoming Bytes is automatic. Note that this may take several
clocks, depending on the rate at which data is sent over the LAN.

5. Repeat steps 1-5

The timing diagrams below illustrates this interface's timing.

The transmitted sequence is 010203..etc.
The first two output words contain 8 valid data Bytes. They are available one clock after requested the
application generates the TCP_RX_CTS pulse.
The third output word contains only two Bytes (the last two Bytes received at this time). The next
TCP_RX_CTS is ignored as there is no other data waiting in the output buffer.

17

The third output word is being filled as data arrives. Note that the number of valid Bytes is updated with some
delay as the component must confirm each frame's validity at the end of each Ethernet frame.

18

UDP Transmitter Latency
Before sending a UDP frame, the data must be stored in a buffer while the checksum is being computed.
Therefore, the transmit latency depends to a large part on the size of the UDP frame, since transmission can only
start after the last word is received from the user.

For example: in the case of a 2048-byte frame, the transmit latency is 1.734us

The 10Gbits/s capacity is nearly fully utilized in the case of 2048-byte UDP frames: 2048 bytes/1.702us = 9.62
Gbits/s

Libcap File Player
Real network packets captured by the popular Wireshark LAN analyzer can be used as realistic stimulus for the
COM-5502 software. The tbcom5502.vhd test bench reads a libpcap-formatted file as captured by Wireshark
and feeds it to the COM-5502 receive path. The input file must be named input.cap and be placed in the same
directory as the Vivado project.

The libpcap file format is described in http://wiki.wireshark.org/Development/LibpcapFileFormat

19

http://wiki.wireshark.org/Development/LibpcapFileFormat

Note that Wireshark is sometimes unable to capture checksum fields when the PC operating system offloads the
checksum computation to the network interface hardware. In order to still be allowed to simulate, set
SIMULATION := ‘1’ in the generic map section of the COM5502.vhd component. When doing so,

(a) the IP header checksum is considered valid when read as x”0000”.
(b) The TCP checksum computation is forced to a valid 0x0001, irrespective of the 16-bit field captured by

Wireshark.

Components details

WHOIS2.VHD
Before sending any IP packet, one must translate the destination IP address into a 48-bit MAC address.

A look-up table (within arp_cache2.vhd) is available for this purpose. Whenever there is
no entry for the destination IP address in the look-up table, an ARP request is broadcasted
to all asking for the recipient to respond with an ARP response. The main task of the
whois2.vhd component is to assemble and send this ARP request.

ARP_CACHE2.VHD
A block RAM is used as cache memory to store 128 MAC/IP/Timestamp records. Each record
comprises (a) a 48-bit MAC address, (b) the associated IP address (32-bit IPv4 or 64-bit local IPv6)
and (c) a timestamp when the information was last updated. The information is updated continuously
based on received ARP responses and received IP packets. The component keeps track of the oldest
record, which is the next record to be overwritten.

Whenever the application requests the MAC address for a given IP address (search key), this
component searches the block RAM for a matching IP address key. If found, it returns the associated
MAC address. If the search key is not found or is older than a refresh period, this component asks
whois2.vhd to send an ARP request packet.

The code is optimized for fast access. Response time is between 32ns and 850ns depending on the
record location in memory.

This routing table is instantiated once and shared among multiple instances requiring routing services.
An arbitration circuit is used to sequence routing requests from several transmit instances (for example
several instantiations of the UDP_TX component).

20

ComBlock Compatibility List
FPGA development platform
COM-1800 FPGA (XC7A100T) + ARM + DDR3 SODIMM socket + GbE LAN development
platform
Network adapter
COM-5104 10G Ethernet network interface
Software
COM-5501SOFT 10Gbps Ethernet MAC. VHDL source code.
COM-5401SOFT 10/100/1000 Mbps Ethernet MAC. VHDL source code.
COM-5502SOFT IP/UDP/TCP/ARP/PING stack for 10GbE. VHDL source code.
COM-5503SOFT IP/UDP/TCP CLIENT/ARP/PING stack for 10GbE. VHDL source code.

ComBlock Ordering Information

COM-5502SOFT IP/TCP SERVER/UDP/ARP/PING PROTOCOL STACK for 10GbE, VHDL SOURCE
CODE

ECCN: EAR99

MSS • 845 Quince Orchard Boulevard Ste N •
Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com

21

http://www.comblock.com/download/com5503soft.pdf
http://www.comblock.com/download/com5502soft.pdf
http://www.comblock.com/download/com5401soft.pdf
http://www.comblock.com/download/com5501soft.pdf
http://www.comblock.com/com5104.html
http://www.comblock.com/com1800.html

	COM-5502SOFT IP/TCP SERVER/UDP/ARP/PING STACK for 10GbE VHDL SOURCE CODE OVERVIEW
	Overview
	Block Diagram
	Target Hardware
	Device Utilization Summary
	TCP Throughput
	Throughput Performance Examples
	TCP Latency Performance Examples
	Component Interface
	Configuration
	The user can set and modify the following controls at run-time. All controls are synchronous with the user-supplied global CLK.

	UDP-Application Interface
	TCP-Application Interface
	DHCP Server Application Interface

	Limitations
	Software Licensing
	Configuration Management
	VHDL development environment
	Ready-to-use Hardware
	Acronyms
	Top-Level VHDL hierarchy
	VHDL simulation
	Clock / Timing
	UDP Receive Latency
	TCP Receive Latency
	Troubleshooting
	TCP receive interface timing (simple)
	TCP receive interface timing (detailed)
	UDP Transmitter Latency
	
	Libcap File Player
	Components details
	WHOIS2.VHD
	Before sending any IP packet, one must translate the destination IP address into a 48-bit MAC address. A look-up table (within arp_cache2.vhd) is available for this purpose. Whenever there is no entry for the destination IP address in the look-up table, an ARP request is broadcasted to all asking for the recipient to respond with an ARP response. The main task of the whois2.vhd component is to assemble and send this ARP request.

	ARP_CACHE2.VHD

	ComBlock Compatibility List
	ComBlock Ordering Information

