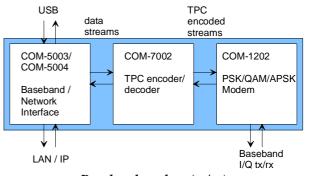
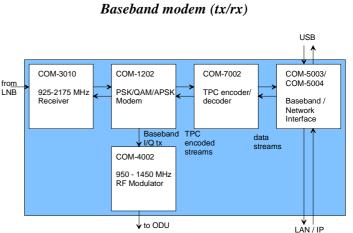
Com Block

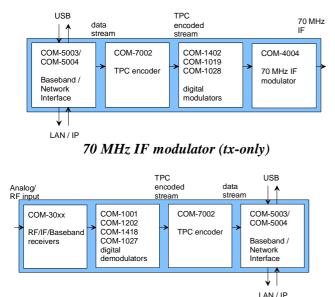
COM-7002 TURBO CODE ERROR CORRECTION ENCODER / DECODER

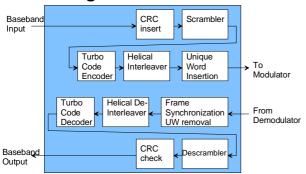
Key Features


- Full duplex turbo code encoder / decoder.
- Rate: 0.25 to 0.97.
- Block length: 64 bits to 4 Kbits.
- Speed up to 11.7 Mbps.
- Automatic frame synchronization.
- 4-bit soft-quantization input.
- Includes unique word for frame synchronization, helical interleaving, scrambling and CRC.
- Built-in BER tester
- Simple software upgrade from the COM-7001.
- Single 5V supply. Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right, bottom). Interfaces with 5V and 3.3V logic.


For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com7002.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.html</u>.


Typical Applications


RF modem (tx/rx)

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com © MSS 2000-2013 Issued 5/4/2013

Analog/RF receiver (rx-only)

Block Diagram

Turbo Codes

Two-dimensional and three-dimensional turbo codes are supported. The constituent code for each dimension is chosen among the following :

Hamming	Parity
	(4,3)
(8,4)	(8,7)
(16,11)	(16,15)
(32,26) [2D only]	(32,31) [2D only]
(64,57) [2D only]	(64,63) [2D only]

There are two key restrictions in selecting the 2D or 3D codes :

(a) the third dimension code is limited to a maximum length of 16 bits.

(b) the maximum block size (including the CRC) is 4096 bits.

Below are a few examples of code selection and the resulting block size and code rate.

Code	Block size (bits)	Rate
2D (64,57)x(64,57)	4096	0.793
3D (32,26)x(32,26)x(4,3)	4096	0.495
3D (16,11)x(16,11)x(16,11)	4096	0.325
2D (8,4)x(8,4)	64	0.25

The overall ability to correct errors is affected by the code rate, the block size and the number of iterations at the decoding end. A high number of iterations will reduce the throughput but increase the error correction capability. It the data rate is set above the capabilities of the decoder, the number of decoding iterations will be automatically reduced.

Below are a few examples of code selection, the resulting coding gain at 10^{-6} BER and data throughput, assuming 6 decoding iterations :

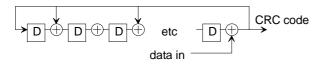
Code	Coding gain @ 10 ⁻⁶ BER	Throughput (encoded / decoded) in Mbit/s
2D (64,57)x(64,57)	7.3 dB	11.7/9.2
3D (32,26)x(32,26)x(4,3)	8.1 dB	10.4/5.1
3D	8.5 dB	11.0/3.5
(16,11)x(16,11)x(16,11)		

Utilities to help with the selection of turbo codes and the computation of block length, rate and coding gain can be found at <u>www.aha.com</u>.

Electrical Interfaces

Coded data input	Definition
(from	
demodulator)	
DATA_C_IN[3:0]	Coded data input (typically from
	a demodulator). 4-bit soft
	quantized.
	Unsigned representation.
SAMPLE_C_CLK_IN	Input sample clock. One
	CLK_C_IN-wide pulse. Read
	input data at rising edge of
	CLK_C_IN when
	$SAMPLE_C_CLK_IN = '1'$
CLK_C_IN	Input clock.
	Maximum frequency is 90 MHz.

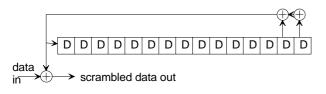
Decoded Output	Definition
(to baseband interface)	
DATA_D_OUT	Decoded data bit.
SAMPLE_D_CLK_OUT	Decoded bit clock. One
	CLK_OUT-wide pulse.
	Read output data at rising
	edge of CLK_OUT when
	SAMPLE_D_CLK_OUT = '1'
SOF_D_OUT	Code block synchronization
501_0_001	pulse.
	One CLK_OUT-wide
	pulse, aligned with
	SAMPLE_D_CLK_OUT for
	the first bit of the frame (code
DATA_D_VALID_OUT	block). Indicates whether residual
001_0_17_0_17	errors were found in the
	PREVIOUS frame after
	error correction based on
	the CRC check (when
	enabled). Read at the
	following start of frame
	when FRAME_SYNC =
	·1'.
Uncoded data input	Definition
(from baseband interface)	
DATA_U_IN	Uncoded data to be
	transmitted over noisy
	channel.
SAMPLE_U_CLK_IN	Input bit clock. One
	CLK_U_IN-wide pulse.
	Read input data at rising
	edge of CLK_U_IN when
	SAMPLE_U_CLK_IN = '1'
SAMPLE_U_CLK_IN_REQ	I Output. One CLK_U_IN -
	wide pulse.
	Requests a sample from the
	module upstream. For flow-
<u> </u>	control purposes.
CLK_U_IN	control purposes. Input clock.
CLK_U_IN	control purposes. Input clock. Maximum frequency is 90
	control purposes. Input clock. Maximum frequency is 90 MHz.
Encoded data output	control purposes. Input clock. Maximum frequency is 90
Encoded data output (to modulator)	control purposes. Input clock. Maximum frequency is 90 MHz. Definition
Encoded data output	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be
Encoded data output (to modulator)	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy
Encoded data output (to modulator) DATA_E_OUT	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy channel.
Encoded data output (to modulator)	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy channel. Output bit clock. One
Encoded data output (to modulator) DATA_E_OUT	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy channel.
Encoded data output (to modulator) DATA_E_OUT	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy channel. Output bit clock. One CLK_OUT-wide pulse. Read input data at rising edge of CLK_OUT when
Encoded data output (to modulator) DATA_E_OUT	control purposes. Input clock. Maximum frequency is 90 MHz. Definition Encoded data to be transmitted over noisy channel. Output bit clock. One CLK_OUT-wide pulse. Read input data at rising


SOF_E_OUT	Code block
	synchronization pulse.
	One CLK_OUT-wide
	pulse, aligned with
	SAMPLE_E_CLK_OUT for
	the first bit of the frame
	(code block).
SAMPLE_E_CLK_OUT_REQ	Input. One CLK_OUT-
	wide pulse.
	Sample request from the
	module downstream
	(modulator). For flow-
	control purposes.
Ancillary Signals	Definition
CLK_OUT	Output clock for the
	output signals on
	connectors J2/J3. Fixed
	frequency f _{clk} of 40 MHz.
Serial Monitoring &	DB9 connector.
Control	115 Kbaud/s. 8-bit, no
	parity, one stop bit. No
	flow control.
Power Interface	4.75 – 5.25VDC.
	Terminal block. Power
	consumption is
	approximately
	proportional to the data
	throughput. The
	maximum power
	consumption is 300mA.

Operations

CRC check

The Cyclic Redundancy Code is used to detect blocks which contain uncorrected errors. A 16-bit or 32-bit CRC is appended to the data in each block. In applications where spectral efficiency is important, the CRC check can be disabled by software command.


The generic form of the CRC code generator is shown below:

Two standard CRC encoders are available: CCITT 16-bit CRC and 32-bit CRC. The feedback taps are 0x1 10 21 and 0x1 04 C1 1D B7 respectively. The MSB is the leftmost tap on the generic CRC code generator shown above.

Scrambling

A scrambler can be used to randomize the transmitted bit pattern. The scrambler is a 16-bit linear feedback shift register with generator polynomial $1 + x^{14} + x^{15}$.

The scrambler/descrambler is reset at each frame. The seed value (contents of the register upon reset) is 0x5210, where the MSB is in the rightmost register 15. The scrambling and descrambling feature can be enabled or disabled by software command.

Unique Word

By nature, the turbo-code FEC is a block code: coded data is packetized into blocks/frames. The decoder cannot operate without first recovering the frame boundaries. In order to help recovering the frame synchronization at the receiver, the transmitter inserts periodic preambles between frames. The preamble is referred to as "unique word".

The unique word is 32-bit long: 01011010 00001111 10111110 01100110 (binary) 0x 5A 0F BE 66 (hex) The most significant bit (left-most) is transmitted first.

In order to limit the bandwidth expansion to less than 5%, the unique word transmission frequency depends on the code block size:

Code block size	UW transmission rate
\geq 1024 bits	Once every block
\geq 512 bits and < 1024 bits	Once every two blocks
\geq 256 bits and < 512 bits	Once every four blocks
< 256 bits	Once every eight blocks

The unique word is not error corrected.

The unique word transmission or reception can be disabled by software command. This can be useful in configurations where frame synchronization references are available externally.

If unique word synchronization is enabled, the 32bit unique word is removed from the received data stream prior to error correction.

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

- Asynchronous serial (DB9)
- or connections via adjacent ComBlocks:
 - USB
 - TCP-IP/LAN,
 - Asynchronous serial (DB9)
 - PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-7002 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-7002 module to be configured, next click the *Settings* button to display the *Settings* window shown below.

킂 COM7002 Turbo Code Error Correction Encoder/De 🗙
-Encoding-
🗹 Enable 🔽 Scrambling 📃 Insert CRC
Code type 1st dimension: (32,26) Hamming 💌
Code type 2nd dimension: (32,26) Hamming 💙
Code type 3rd dimension: No code 💙
Test mode: Off
✓ Limit encoder output data rate 10000000 bits/s
-Decoding
🔽 Enable 🛛 Decrambling 🗌 CRC check
Code type 1st dimension: (64,57) Hamming 💉
Code type 2nd dimension: (32,26) Hamming 💌
Code type 3rd dimension: No code 💌
Maximum decoding iterations: 6 0-254
General
I/O selection: J2 encoder in/decoder out, J3 encoder out/decoder in 💌
Bypass encoder/decoder
Apply Ok Advan Cancel

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C reference.pdf)

All control registers are read/write.

Definitions for the <u>Control registers</u> and <u>Status</u> registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

This module operates at a fixed internal clock rate \mathbf{f}_{clk} of 40 MHz.

Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

Parameters	Attributes
Mode	00 = full duplex
	01 = encoder only
	10 = decoder only
	REG0 bits 2-1
CRC insertions	00 = off
(transmitter side)	01 = 16-bit on
	10 = 32-bit on
	REG0 bits 4-3
CRC check	00 = off
(receiver side)	01 = 16-bit on
	10 = 32-bit on
	REG0 bits 6-5
Scrambling	0 = off
(transmitter side)	1 = on
	REG0 bit 7
Scrambling	0 = off
(receiver side)	1 = on
	REG1 bit 0
Tx unique word	0 = off
	1 = on
	REG1 bit 1
Rx unique word	0 = off
synchronization and removal.	1 = on
	REG1 bit 2
Turbo code	When set, bypasses the turbo product
bypass mode	code at both the encoder and decoder.
	Connects Uncoded side (_U) to
	Encoded side (_E). Connects Coded
	side (_C) to Decoded side (_D).
	Note: soft-quantized bits are lost in the
	process. Only the most signicant bit is
	kept.
	0 = off
	1 = on
	REG1 bit 3

Internal	00 = test mode disabled
pattern generation	
(test mode)	01 = counting sequence: When set, the baseband input is disabled and a periodic pattern is internally generated at the encoder input. The pattern consists of an 8-bit counter, MSB transmitted first.
	10 = internal generation of a PRBS-11 2047-bit periodic pseudo-random bit sequence as Turbo code encoder input. (overrides external input bit stream). This test mode is typically used to measure end-to-end BER over a transmission channel.
	The test pattern bit rate is automatically set by the module downstream (typically a modulator) as part of the flow control mechanism, unless limited herein in REG9(6).
	REG1 bits 5-4
Encoder code X-axis (1 st dimension)	0000 = no code 0011 = (8,4) Hamming 0100 = (16,11) Hamming 0101 = (32,26) Hamming
	0110 = (64,57) Hamming 1010 = (4,3) parity code 1011 = (8,7) parity code
	1100 = (16,15) parity code 1101 = (32,31) parity code 1110 = (64,63) parity code PEC2 bits 3.0
Encoder code	REG2 bits 3-0 Same definition as above.
Y-axis (2 nd dimension)	REG2 bits 7-4
Encoder code Z-axis (3 rd dimension)	Same as above but limited to codes of length 16 or less.
Encoder code	REG3 bits 3-0 Function of the code selection and the
block size (Unencoded block size)	CRC selection above. For example if a 3D code $(4,3)x(8,7)x(16,15)$ is used in conjunction with 32-bit CRC, the block length is $3x7x15 - 32 = 283$.
	This field must always be defined (even when configured in decoder-only mode). REG3 bits 7-4 (LSB) REG4 bits 7-0
Decoder code	Same definition as for tx code. Receiver
X-axis (1 st dimension)	codes can be selected independently of transmitter codes.
	REG5 bits 3-0
Decoder code	Same definition as above

-	
Decoder code	Same as above but limited to codes of
Z-axis (3 rd	length 16 or less.
dimension)	REG6 bits 3-0
Decoder code	Function of the code selection. For
block size	example if a 3D code (4,3)x(8,7)x(16,15)
(Coded block size)	is used, the block length is $4x8x16 = 512$.
SIZE)	Maximum size is 4096.
	Special case: 0 means 4096
	This field must always be defined (even
	when configured in encoder-only mode).
	REG6 bits 7-4 (LSB)
	REG7 bits 7-0
Turbo code	1 - 254. Typical settings is 6.
decoder	Special case: $0 =$ the decoder outputs the
maximum number of	hard decision value for each bit without
iterations	correction.
	REG8 bits 7-0
Encoder data	In most cases, the COM-7002 encoder
rate internal /	output data rate is determined by
external selection	modules downstream (for example a
selection	modulator).
	There are, however, cases when the
	encoder output data rate is set using an
	internal NCO (for example when testing
	turbo code encoder and decoder back to
	back).
	0 automol Encoder output hit rote is
	0 = external. Encoder output bit rate is based on SAMPLE_E_CLK_OUT_REQ bit
	requests from following module.
	requests from following module.
	1 = internal. Output bit rate is selected
	internally by the NCO frequency set in
	REG10/11/12. Bit requests
	SAMPLE_E_CLK_OUT_REQ are ignored.
	REG9 bit 6
Maximum	Internal generation of the encoder output
Encoder	data rate. Ignore this field when the
output data	output data rate is determined by
rate	modules downstream.
	24-bit signed integer (2's complement
	representation) expressed as
	fsymbol rate * 2^{24} / f _{clk} . The internal
	processing clock \mathbf{f}_{clk} is typically 40 MHz.
	REG10 = bits 7-0 (LSB)
	$REG11 = bits \ 15 - 8$
	REG12 = bits 23 – 16 (MSB)

I/O selection	0 =
	J2 as baseband interface:
	(Uncoded in, Decoded out)
	J3 as modem interface:
	(Coded in, Encoded out)
	1 =
	J2 as modem interface:
	(Coded in, Encoded out)
	J3 as baseband interface:
	(Uncoded in, Decoded out)
	2 = J2 as demodulator interface
	(Coded in)
	J4 as modulator interface
	(Encoded out)
	J3 as baseband interface:
	(Uncoded in, Decoded out)
	REG13 bits 7-0

(Re-)Writing to control register REG13 is recommended after a configuration change to enact the change (Note: this is done automatically when using the graphical user interface).

Status Registers

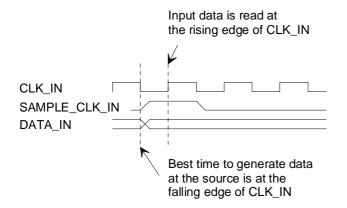
Digital status registers are read-only.

Digital status registers are read-only.					
Parameters	Monitoring				
Channel bit error	Bit errors counted over 1024				
rate	uncorrected bits (unique word). This				
	measurement is refreshed every 16				
	frames.				
	SREG13: bits 7-0				
	SREG14: bits 15-8				
Number of errors	SREG15: bits 7-0				
corrected in each	SREG16: bits 11-8				
frame					
CRC check	0 = pass				
	1 = fail				
	SREG16 bit 4				
BER Tester					
Parameters	Monitoring				
Bit Errors	Bit errors can be counted at the				
	decoder output when a PRBS-11 test				
	decoder output when a PRBS-11 test sequence is transmitted.				
	decoder output when a PRBS-11 test sequence is transmitted.				
	sequence is transmitted.				
	sequence is transmitted. Number of bit errors in a 1,000,000				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window.				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB)				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8]				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB)				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8]				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8] SREG19: error_count[23:16] (MSB)				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8] SREG19: error_count[23:16] (MSB) The bit errors counter is updated once				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8] SREG19: error_count[23:16] (MSB) The bit errors counter is updated once every periodic measurement window.				
	sequence is transmitted. Number of bit errors in a 1,000,000 bit window. SREG17: error_count[7:0] (LSB) SREG18: error_count[15:8] SREG19: error_count[23:16] (MSB) The bit errors counter is updated once				

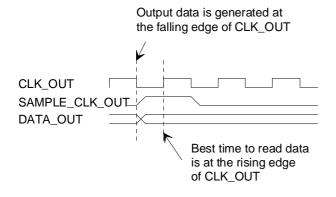
Cumulative number of decoded bit errors	Cumulative number of bits at the decoder output. SREG20 (LSB) SREG21, SREG22 SREG23(MSB)
Cumulative number of decoded bits	Cumulative number of bits at the decoder output. SREG24 (LSB) SREG25, SREG26 SREG27(MSB)

Note: multi-byte values are latched upon reading status register SREG13

Test Points

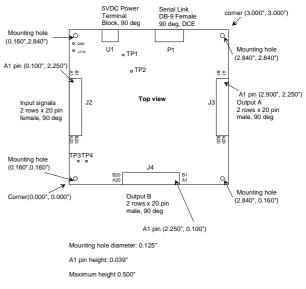

Test points are provided for easy access by an oscilloscope probe.

Test	Definition
Point	
TP1	'1' when the turbo code encoder data path
(E_GOUT)	is empty and not processing a block. '0'
	otherwise. Use this test point to assess the
	encoder utilization ratio.
TP2	'1' when the turbo code decoder data path
(D_GOUT)	is empty. Use this test point to assess the
	decoder utilization ratio.
TP3	Receive unique word synchronization.
	'1' when a unique word is detected with
	less than 10% bit errors (at least 28
	matching bits out of 32).
TP4	Bit error detected by BER tester after
	decoding. Valid only when a PRBS-11 test
	sequence is sent by the encoder.
INIT	Unique word transmit enable. Provides
	some indication as to the encoded frame
	period.
J4/B7*	Receive frame synchronization.
	Solid '1' when receiving periodic frame
	preambles at the right time. '0' or toggling
*	otherwise.
J4/B8*	'1' when encoder input buffer contains at
	least a full frame of data ready to encode,
X (D 0 [*]	'0' otherwise.
J4/B9*	'1' when encoder output buffer contains
X4 (D) 4 4 *	data, '0' when empty
J4/B11*	'1' when decoder input buffer contains a
	full frame of data ready to decode, '0'
14/0.10*	otherwise.
J4/B12*	'1' when decoder output buffer contains
	data, '0' when empty.
(*)-These si	pecial test points on connector J4 are enabled


(*)-These special test points on connector J4 are enabled only when REG9(7) = '1'. High impedance otherwise.

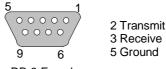
Timing

Input


Output

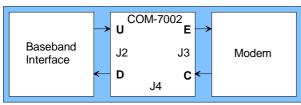
Schematics

The hardware schematics are available on the ComBlock CD shipped with every module as \Hardware Schematics\com_7001schematics.pdf


Mechanical Interface

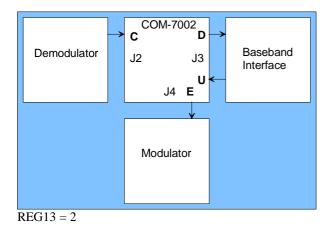
Pinout

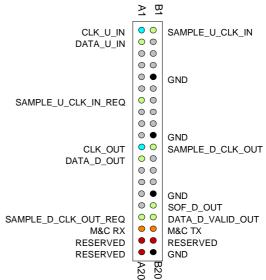
Serial Link P1


The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required.

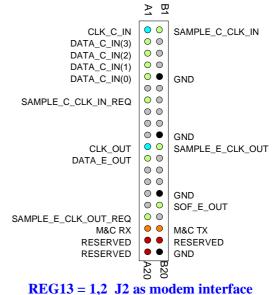
DB-9 Female

Input / Output Connectors

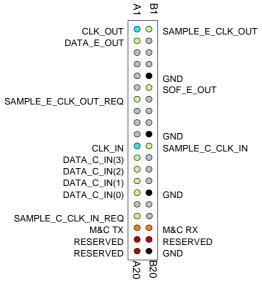

The pinout for the 40-pin input / output connectors can be selected by software command (REG13) among several possible configurations:


REG13 = 0

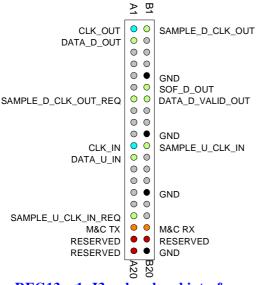
	\rightarrow	c co	M-70	02 D	\rightarrow	
Modem		J2		J3		Baseband Interface
	~	Е	J4	U	~	


REG13 = 1

Connector J2



REG13 = 0 J2 as baseband interface



Connectors J3 / J4

REG13 = 0 J3 as modem interface

REG13 = 1 J3 as baseband interface

I/O Compatibility List

(not an exhaustive list)
COM-5003 TCP-IP / USB gateway
COM-5004 IP router
COM-1202/1203 PSK/QAM/APSK modem
COM-1518 DSSS demodulator
COM-1027 FSK/MSK/GFSK/GMSK demodulator
COM-1402 PSK/QAM/APSK modulator
COM-1519 DSSS modulator
COM-1028 FSK/MSK/GFSK/GMSK modulator
COM-1x00 FPGA/ARM development platforms FPGA
development platforms

Configuration Management

This specification document is consistent with the following software versions: COM-7002 FPGA firmware: Version 4 and above. ComBlock Control Center graphical user interface: Revision 3.0.6h and above.

These software versions can be downloaded from www.comblock.com/download.html

Comparison with Previous ComBlocks

Key Improvements with respect to COM-7001 TPC encoder/decoder

The COM-7002 emphasises bi-directional encoding/decoding thus significantly reducing the number of ComBlocks needed for building full-duplex communication equipment. Other bi-directional ComBlock modules include the COM-5003, COM-5004, COM-1202 and more to come.

Existing COM-7001 users can upgrade (free) to the COM-7002 by reprogramming the flash memory with the latest COM-7002 firmware.

ComBlock Ordering Information

COM-7002 TURBO CODE ENCODER / DECODER

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com