Overview
The COM-8001 ComBlock Module comprises two pieces of software:

- VHDL code to run within the FPGA for all signal processing functions.
- C/Assembly code running within the Atmel AT90S8515 or ATMega8515L microprocessor for non application-specific monitoring and control functions.

The VHDL code interfaces to the monitoring and control functions by exchanging byte-wide registers on the Atmel microcontroller 8-bit data bus. The control and monitoring registers are defined in the specifications [1].

The Atmel microprocessor code is generic (i.e. non application specific), not user-programmable and functionally transparent to the user. It is thus not described here.

The COM-8001 VHDL code runs on the generic COM-8000 hardware platform. The schematics [2] for this platform are available in this CD.

Reference documents
[3] VHDL source code in directory com-8001_011\src
[4] Xilinx ISE project files
 com-8001_011\com-8001_a.npl
 com-8001_011\com-8001_b.npl
[5] .ucf constraint files
 com-8001_011\src\root_arb_waveform_gen_a.ucf.ucf

Configuration Management
The current software revision is 11.

Configuration Options
In order to provide configuration flexibility without unduly increasing the hardware complexity, some features require generating different firmware versions. In particular, the COM-8001 can be equipped with 256 MB SDRAM (-A option) or 1 GB SDRAM (-B option). Most source files are common to both options. These common files are located in the source directory 8001_011\src\. Files specific to the –A or –B option are stored in the subdirectories 8001_011\src\a\ and 8001_011\src\b\ respectively.

Two Xinlix project files are used [4], one for each option.

VHDL development environment
The VHDL software was developed using the Xilinx ISE 6.3 development environment. The synthesis tool is XST.

Target FPGA
The VHDL code was synthesized for the Xilinx Spartan-IIIE XC2S300E-6PQ208 FPGA.
Xilinx-specific code

The VHDL source code was written in generic VHDL with few Xilinx primitives. No Xilinx CORE is used. The Xilinx primitives are:
- BUFG
- IBUF
- RAMB4_S16_S16
- RAMB4_S8_S8
- RAMB4_S1_S1

VHDL software hierarchy

The root program (highlighted) is `root_arb_waveform_gen_a.vhd`.

Clock / Timing

The software uses a single 40 MHz clock, CLK_IN2, as provided externally through pin A1 of the J1 input connector. CLK_IN2 served a triple purpose: (a) internal processing clock, (b) synchronous input clock and (c) synchronous output clock. The code is written to meet the timing requirements on the target FPGA at a speed of at least 40 MHz.

Principle of operation

The code is written for interfacing with generic SDRAM memories. A set of specifications can be obtained from Micron (MT48LC16M16A2 – 4 MEG X 16 X 4 BANKS). The clock provided to the SDRAM is 40 MHz, well below the specified maximum for PC100/PC133 SDRAMs.

Data transfers are done in burst of 4 read or 4 write (64 bit wide x 4 = 32 bytes). Therefore, user defined start and stop addresses must be multiple of 32-bytes.

In addition to the burst read, burst write operations, the software takes care of the initial SDRAM initialization and of periodic auto refresh.

Several VHDL components (named `word64_to_wordx.vhd`) are used to break the 32-byte burst into samples of user-defined widths. The widths currently supported are as follows: 1-bit, 2-bits, 8-bits, 14-bits, 16-bits, 20-bits.
FPGA Occupancy

Design Summary

Number of errors: 0
Number of warnings: 81

Logic Utilization:

- Total Number Slice Registers: 2,288 out of 6,144 37%
- Number used as Flip Flops: 2,287
- Number used as Latches: 1
- Number of 4 input LUTs: 4,650 out of 6,144 75%

Logic Distribution:

- Number of occupied Slices: 2,889 out of 3,072 94%
- Number of Slices containing only related logic: 2,889 out of 2,889 100%
- Number of Slices containing unrelated logic: 0 out of 2,889 0%

*See NOTES below for an explanation of the effects of unrelated logic

- Total Number 4 input LUTs: 4,907 out of 6,144 79%
- Number used as logic: 4,650
- Number used as a route-thru: 257
- Number of bonded IOBs: 136 out of 142 95%
- IOB Flip Flops: 168
- Number of Tbufs: 15 out of 3,200 1%
- Number of Block RAMs: 12 out of 16 75%
- Number of GCLKs: 4 out of 4 100%
- Number of GCLKIOBs: 3 out of 4 75%

Total equivalent gate count for design: 247,954
Additional JTAG gate count for IOBs: 6,672

Contact Information

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: info@comblock.com