

COM-8002 HIGH-SPEED DATA ACQUISITION 256MB / 40 Msamples/s

Key Features

- Maximum sampling rate 40 MHz.
- Sample precision from 1 to 20-bit wide.
- 256 Mbytes storage.
- Download over TCP-IP network using the COM-5003 Network interface module.
- Seamless connection to ComBlock digital and RF receivers.
- Typical applications:
 - o Logic analyzer
 - o RF signal capture
 - o Data logging
- External/Internal trigger selection
- User control over memory segmentation (start address, upload/download window size).
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com8002.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Typical Applications

RF Signal Capture

In this example, a 2.4 GHz Radio-Frequency signal is first translated to near zero center frequency. After undergoing anti-aliasing filtering, the complex baseband samples are quantized at 40 Msamples/s with 10-bit precision. The resulting 800 Mbit/s stream is stored in real-time. The storage capacity is 100 million complex samples.

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2007 Issued 6/20/2007 The samples can be read remotely over a TCP-IP link for further batch processing.

Logic Analyzer

The COM-8002 is perfectly suited as a high-speed, high-capacity logic analyzer. In the example illustrated below, the device under test receives its input signals from the COM-8001 arbitrary waveform generation module, while the output signals are collected by the COM-8002 module. Input stimulus and output samples are transferred from/to a remote computer over the network.

Electrical Interface

Inputs

Input Module	Definition	
Interface		
DATA_IN[19:0]	Input data sample. The width is	
	programmable among 1,2,8,16 and	
	20-bit wide. For width smaller than	
	20, the lower ranking bits	
	(0,1,2etc) are used.	
SAMPLE_CLK_IN	Read input sample at rising edge of	
	CLK when	
	SAMPLE_CLK_IN = '1'	
EXT_TRIGGER_IN	External trigger pulse. Indicates	
	that the current input sample is the	
	first in the selected upload window.	
	The pulse is one CLK wide and is	
	aligned with SAMPLE_CLK_IN.	
AGC_OUT	Output. When the COM-8002 is	
	connected directly to an analog /	
	RF receiver, it generates a pulse-	
	width modulated signal to control	
	the analog gain prior to A/D	
	conversion. The purpose is to use	
	the maximum dynamic range while	
	preventing saturation at the A/D	
	converter.	
CLK_IN	Input reference clock for	
	synchronous I/O and internal	
	processing clock \mathbf{f}_{clk} .	
	DATA_IN and SAMPLE_CLK_IN	
	are read at the rising edge of	
	CLK_IN. Typically 40 MHz.	

Outputs

Output Module	Definition
DATA_OUT[7:0]	Output sample.
SAMPLE_CLK_OUT	Output. Pulse to indicate that
	DATA_OUT contains a new
	sample. Read DATA_OUT at
	the rising edge of CLK when
	SAMPLE_CLK_OUT = '1'.
SAMPLE_CLK_REQ_IN	Sample request input.
	Used for flow control.

Other I/Os

Serial	DB9 connector.	
Monitoring &	115 Kbaud/s. 8-bit, no parity, one stop	
Control	bit. No flow control. Used for	
	ComBlock remote monitoring and	
	control (no data stream).	
Power	4.75 – 5.25VDC. Terminal block.	
Interface	Power consumption is approximately	
	proportional to the CLK frequency.	

The maximum power consumption at
40 MHz is 600mA.

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration (via Serial Link / LAN)

Complete assemblies can be monitored and controlled centrally over a single serial or LAN connection.

The module configuration parameters are stored in non-volatile memory. All control registers are read/write.

Parameters	Configuration	
Upload start	It is possible to upload the entire 256MB	
address	memory or a fraction thereof. The upload	
	section is identified by its start address	
	and length. It is expressed in bytes. The	
	address increment is 32-bytes (i.e. 5 least	
	significant bits are ignored).	
	REG0 = bits 7-0 (LSB)	
	REG1 = bits 15-8	
	REG2 = bits 23-16	
	REG3 bits $3-0 = bits 27-24$	
Upload	Upload window length, expressed in	
window	bytes. The size increment is 32-bytes	
length	(i.e. 5 least significant bits are ignored).	
	REG4 = bits 7-0	
	REG5 = bits 15-8	
	REG6 = bits 23-16	
	REG7 bits 3-0 = bits 27-24	
Download	It is possible to download the entire	
start address	256MB memory or a fraction thereof.	
	The download section is identified by its	
	start address and length. It is expressed	
	in bytes. The address increment is 32-	
	bytes (i.e. 5 least significant bits are	
	ignored).	
	REG8 = bits 7-0	
	REG9 = bits 15-8	
	REG10 = bits 23-16	
	REG11 bits 3-0 = bits 27-24	
Download	Download window length, expressed in	
window	bytes. The size increment is 32-bytes (i.e.	
length	5 least significant bits are ignored).	
	REG12 = bits 7-0	
	REG13 = bits 15-8	
	REG14 = bits 23-16	
	REG15 bits 3-0 = bits 27-24	
Upload /	000 = no change.	
Download	001 = start upload.	
mode	010 = stop upload.	
	011 = start download.	

	100 = stop download.		
	Upon switching from download mode to		
	upload mode, data collection starts until		
	the upload window length is full.		
	Note: a mode change MUST be followed		
	by writing to REG18 to become		
	effective.		
	REG16 bits 3-1		
External	Enable or disable the external trigger		
Trigger	When enabled data acquisition starts		
Enable	when the COM-8002 is in unload mode		
	and when a pulse is received on the		
	EXT TRIGGER IN input		
	0 = disabled		
	1 = anshlad		
	I = chabled.		
ACC anablad	REG10 bit 4		
AUC ellableu	Enable of disable the automatic gain		
	control for an external KF receiver.		
	0 = fixed at a preset level (see REG18)		
	I = enabled (only if 20-bit wide input)		
T	REG16 bit 5		
Input format	00001 = 1-bit wide		
	00010 = 2-bit wide		
	01000 = 8-bit wide		
	10000 = 16-bit wide		
	10100 = 20-bit wide		
	REG17 bits 4-0		
AGC gain	Gain settings for an external RF receiver.		
	This setting is used when the AGC is		
	disabled (for example during receiver		
	level measurements). Unsigned 8-bit		
	number. When used in conjunction with		
	the COM-300x receivers, 255 represents		
	the minimum gain, 0 the maximum gain.		
	REG18 bits 7-0.		
Input	The input can be subsampled by saving		
Decimation	only one in every D input samples, while		
factor D	the other samples are discarded. Valid		
	range $0 - (2^{24} - 1)$.		
	Input decimation is disabled when when		
	D = 0 or 1.		
	REG19 = bits 7-0 (LSB)		
	REG20 = bits 15-8		
	REG21 = bits 23-16 (MSB)		

Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

Monitoring (via Serial Link / LAN)

Monitoring registers are read-only.

Parameters	Monitoring	
Write pointer	Current DRAM write pointer address.	
address	Used to monitor the upload progress.	
	When finished, the write pointer will	
	point to the last address written to.	
	The integrity of this 4-byte information i	
	preserved when status registers are read	
	in sequence SREG19/20/21/22 (data is	
	frozen upon reading the first byte in	
	SREG19 and released upon reading the	
	last byte in SREG22).	
	SREG19 = bits 7-0	
	SREG20 = bits 15-8	
	SREG21 = bits 23 - 16	
	SREG22 bits $3-0 = bits 27 - 24$	
Read pointer	Current DRAM read pointer address.	
address	Used to monitor the download progress.	
	When finished, the read pointer will	
	point to the last address read. Expressed	
	in bytes.	
	The integrity of this 4-byte information is	
	preserved when status registers are read	
	in sequence SREG23/24/25/26 (data is	
	frozen upon reading the first byte in	
	SREG23 and released upon reading the	
	last byte in REG26).	
	SREG23 = bits 7-0	
	SREG24 = bits 15-8	
	$SREG25 = bits \ 23 - 16$	
	SREG26 bits 3-0 = bits 27 - 24	

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-8002 signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nominal	Buffer
		sampling	length
		rate	(samples)
1: input from	8-bit	SAMPLE_CLK_IN	512
COM-300x	unsigned		
receiver: 1-	(8MSB		
DATA $IN(0.7)$	/10)		
2: DATA_IN(0)	binary	SAMPLE_CLK_IN	4096
Trace 2 signals	Format	Nominal	Capture
C		sampling	length
		rate	(samples)
1: input from	8-bit	SAMPLE_CLK_IN	512
COM-300x	unsigned.		
receiver: Q-	(8MSB		
channel	/10)		
$\frac{\text{DATA}_{\text{IN}(10:17)}}{2 \cdot \text{DATA}_{\text{IN}(10)}}$	hin one	SAMPLE CLK IN	4006
$\frac{2: \text{DATA}_{\text{IN}(1)}}{2: \text{DATA}_{\text{IN}(1)}}$	binary	SAWIFLE_CLK_IN	4096
3: input sampling	binary	processing	4096
SAMPLE CLK IN		clock f _{elk}	
Trigger Signal	Format		
1: input from	8-bit		
COM-300x	unsigned.		
receiver: I-	(8MSB		
channel	/10)		
DATA_IN(0:7)	,		
2: DATA_IN(0)	binary		

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the \mathbf{f}_{clk} processing clock as real-time sampling clock.

In particular, selecting the \mathbf{f}_{clk} processing clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing I/Q baseband signal from RF receiver

Operation

Data Acquisition

Step1: Using the ComBlock Control Center (graphical user interface) configure the upload mode:

- define the upload start address and upload window length
- select the input format width.
- select the external trigger when applicable.
- press the 'Apply' button.

Step2: Using the ComBlock Control Center, start data acquisition:

- select the "Start upload" action.
- press the 'Apply' button.

When external trigger is selected, the data collection will wait until a pulse is present on the EXT_TRIGGER_IN input pin.

Data acquisition automatically stops when the specified upload window length is full.

Download

Step 1: Using the ComBlock Control Center, set the COM-8002 in download mode and define the start address where data is to be stored in memory.

Step 2: Using the ComBlock Control Center, download the binary file.

- select the "Start download" action.
- press the 'Apply' button.

A progress bar shows the percentage of completion.

AGC

Because the COM-8002 can be connected directly to a RF receiver, it is capable of controlling the RF receiver gain. The purpose of the AGC is to make full use of the external A/D dynamic range while preventing saturation.

The AGC gain can be enabled or fixed at a given level (for example during level measurements).

The AGC circuit assumes that the input consists of two complex 10-bit samples, unsigned format (consistent with the COM-300x family of RF receivers).

Output sample width & file format

The issue of packing n-bit wide samples in a byteoriented file format must be given some consideration. The diagram below illustrates how 20-bit wide samples are stored in a file:

Please be aware of possible bit reversal at the interface between the COM-8002 input and the preceeding module's output. For instance, the COM-3001 dual band receiver module uses pins DATA_OUT(0) and DATA_OUT(10) as most significant bits for the I and Q output samples respectively.

Conversion utilities for the most common configuration are available in Matlab, C-language source codes and .exe executable forms. They can be downloaded from

www.comblock.com/download/com8002util_002.zip The 'fileunpacker.exe' utility is recommended for ease of use and speed.

Timing

The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

Input

Mechanical Interface

Note: All seven JP1 jumpers must be in the 'IN' location.

Schematics

The board schematics are available on-line at http://comblock.com/download/com_8001schemati cs.pdf

Pinout

Serial Link P1

The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required. This connection can only be used for ComBlock remote monitoring and control. It cannot be used for data stream transfer.

2 Transmit 3 Receive 5 Ground

DB-9 Female

Input Connector J1

When input sample precision of less than 20 bits is selected, the lower ranking bits are used. For example, for a 2-bit precision input sample, DATA_IN(0) and DATA_IN(1) are used.

Output Connector J4

I/O Compatibility List

(not an exhaustive list)	
Input	Output
<u>COM-3001/2/3/4/5/6</u> RF	COM-5003 TCP-IP / USB
receivers	Gateway
<u>COM-1001</u>	
BPSK/QPSK/OQPSK	
digital demodulator	
COM-1008 variable	
decimation	
<u>COM-1011/1018</u> DS	
spread-spectrum	
demodulator	
<u>COM-1027</u>	
FSK/MSK/GFSK/GMSK	
demodulator	
COM-7001 Turbo code	
decoder	

Configuration Management

This specification is to be used in conjunction with VHDL software revision 7.

It is possible to read back the option and version of the active software currently configuring the FPGA using the ComBlock Control Center. Highlight the COM-8002 module and click on the settings button (third from left). The option and version are listed at the bottom of the configuration panel.

ComBlock Ordering Information

COM-8002 HIGH SPEED DATA ACQUISITION, 256MB 40 MS/s.

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com