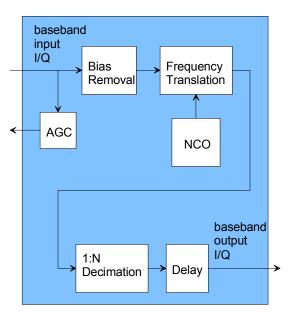


COM-8005 SIGNAL DELAY / SATELLITE SIMULATOR

Key Features


- Programmable delay of a streaming baseband signal: up to 256MB
- Ancillary functions:
 - Frequency shift
 - o AGC
 - Decimation
- Maximum sampling rate: 40 MSamples/s complex baseband signal
- Delay: 0 to 2.62 secs by steps of 0.625 μs (40Msamples/s)
- Seamless connection to ComBlock digital and RF receivers and DACs
- ComScope –enabled: key internal signals can be captured in real-time and displayed on host computer.
- Connectorized 3"x 3" module for ease of prototyping. Standard 40 pin 2mm dual row connectors (left, right). Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the **ComBlock** web site: <u>www.comblock.com/download/com8005.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>www.comblock.com/product_list.htm</u>.

Functional Block Diagram

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 <u>www.ComBlock.com</u> © MSS 2000-2010 Issued 12/31/2010

Electrical Interface

Inputs

Inputs	
Input Module	Definition
Interface	
DATA_I_IN[9:0]	Modulated input signal, real axis.
	10-bit precision.
	Format: 2's complement or
	unsigned.
DATA_Q_IN[9:0]	Modulated input signal, imaginary
	axis. 10-bit precision. Same format
	as DATA I IN.
SAMPLE CLK IN	Input signal sampling clock. One
	CLK-wide pulse. Read the input
	signal at the rising edge of CLK
	when SAMPLE CLK $IN = '1'$.
	Samples can be consecutive. For
	example, SAMPLE CLK IN can
	be fixed at '1' to indicate that new
	input samples are provided once per
	CLK IN clock period.
	Signal is pulled-up.
AGC OUT	Output. When the COM-8005 is
100_001	connected directly to an analog
	receiver, it generates a pulse-width
	modulated signal to control the
	analog gain prior to A/D
	conversion. The purpose is to use
	the maximum dynamic range while
	preventing saturation at the A/D
	converter. 0 is the maximum gain,
	+3V is the minimum gain.
CLK_IN	Input reference clock for
	synchronous I/O. DATA_x_IN and
	SAMPLE_CLK_IN are read at the
	rising edge of CLK_IN. Maximum
	40 MHz. Minimum frequency 25
	MHz.

Outputs

There are two possible output formats, depending on the module connected to the output:

on the module connect	eu to the output.
Complex baseband	Definition
2*10-bit I/Q	
(COM-2001 module	
interface)	
Output Module	
Interface (Output	
data pushed out)	
DATA_I_OUT[9:0]	Modulated output signal, real
	axis. 10-bit precision.
	Format: 2's complement or
	unsigned, selected by
	configuration bit 1.
DATA_Q_OUT[9:0]	Modulated output signal,
	imaginary axis. 10-bit
	precision. Same format as

	DATA_I_OUT.
SAMPLE_CLK_OUT	Output signal sampling clock.
	Read the output signal at the
	rising edge of CLK when
	$SAMPLE_CLK_OUT = '1'.$
	SAMPLE_CLK_OUT is fixed
	at '1' when the modulator is
	enabled. Fixed at '0'
	otherwise.
DAC_CLK_OUT	Output sampling clock for
	Digital to Analog Converters.
	DAC reads the output sample
	at the rising edge.
CLK_OUT	40 MHz output reference
	clock. Exact same frequency
	as CLK IN.

(a)	70 MHz IF waveform generation (COM-
	4004 module interface)

Output Module	Definition
Interface	
DATA_OUT[13:0]	Output. Quadrature baseband
	samples, up to 14-bit
	precision, 2's complement
	format. Bit 13 is the most
	significant bit.
	When a lesser precision is
	selected, the unused least
	significant bits are set to zero.
	The in-phase (I) and
	quadrature (Q) samples
	alternate.
	The samples are generated at
	the falling edge of
	SAMPLE_CLK_REQ_IN.
SAMPLE_CLK_REQ_IN	Input. Input samples are
	clocked at the rising edge of
	SAMPLE_CLK_REQ. I & Q
	samples alternate at each
	request.
	SAMPLE_CLK_REQ is a 100
TY ENADLE OUT	MHz clock.
TX_ENABLE_OUT	Output. Transmit enable.
	Active high. The first sample
	after TX_ENABLE becomes
	active is an in-phase (I)
	sample.
	This signal is generated at the falling adap of
	falling edge of
	SAMPLE_CLK_REQ_IN.

Other I/Os

Serial	DB9 connector.
Monitoring &	115 Kbaud/s. 8-bit, no parity, one stop
Control	bit. No flow control. Used for
	ComBlock remote monitoring and
	control (no data stream).
Power	4.90 – 5.25VDC. Terminal block.
Interface	Power consumption is approximately
	proportional to the CLK frequency.
	The maximum power consumption at
	40 MHz is 600mA.

Important: I/O signals are 0-3.3V LVTTL. Inputs are NOT 5V tolerant!

Configuration

Complete assemblies can be monitored and controlled centrally over a single serial connection or, via adjacent ComBlocks, LAN, USB, or CardBus connection.

Configuration (Basic)

The easiest way to configure the COM-8005 is to use the ComBlock Control Center software supplied with the module(s). After detecting the ComBlock modules (2nd button from left), highlight the COM-8005 module to be configured. Then press the settings button (3rd button from the left).

🔁 ComBlock Control Center		
File Operations Functions Help		
🔆 🛰 🖆 🎸 📵 🔤 🕮 🚇		
COM3004 IF receiver [20 - 90 MHz]		
COM8005 Signal Delay/Satellite Simulator		
COM4004 70 MHz IF Modulator		
COM8005 Signal Delay/Satellite Simulator Basic S 🗙		
Delay: 250000000 ns		
Decimation Factor: 2		
Phase: 338 degrees		
Center Frequency: -1000000 Hz		
AGC Gain: 180		
✓ AGC Enabled		
Output data flow: COM-4004		
V Bias Removal		
Apply Ok Advan Cancel		

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write.

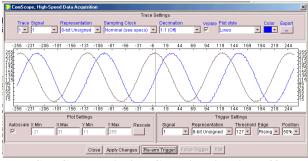
Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

This module operates at an internal processing clock rate $f_{CLK_{IN}}$ (typically 40 MHz) set by the input module.

Parameters	Configuration
Delay	The output delay with respect to the input is expressed in multiple of 25 baseband input samples (after decimation).
	Therefore the minimum delay increment is 625ns for 40 MSamples/s, no decimation.
	The maximum delay is 2.62 sec for 40 MSamples/s, no decimation. Of course, the delay can be much longer when decimation is used.
	0 is a valid entry.
	REG0 = bits 7-0 (LSB)
	REG1 = bits 15-8
	REG2(5:0) = bits 21-16
Input Decimation	The input can be subsampled by saving
factor D	only one in every D input samples, while
	the other samples are discarded. Valid range $0 - (2^{24}-1)$.
	Input decimation is disabled when when
	D = 0 or 1.
	REG4 = bits 7-0 (LSB)
	REG5 = bits 15-8
	REG6 = bits 23-16 (MSB)
Phase rotation	Rotate input samples in phase by
	increments of 360 * REG3/256 degrees. REG3
Center	Nominal center frequency.
frequency (\mathbf{f}_c)	This value is subtracted from the
1 5(0)	received signal actual center frequency.
	32-bit signed integer (2's complement
	representation) expressed as
	$\mathbf{f_c}^* 2^{32} / \mathbf{f_{CLK_IN}}$
	REG7 = bits 7 - 0 (LSB)
	REG8 = bits 15 - 8

	REG9 = bits 23 - 16
	REG10 = bits 31 - 24 (MSB)
AGC gain	Gain settings for an external RF receiver.
	This setting is used when the AGC is
	disabled. Unsigned 8-bit number. When
	used in conjunction with the COM-300x
	receivers, 255 represents the minimum
	gain, 0 the maximum gain.
	REG11
AGC enabled	Enable or disable the automatic gain
	control for an external RF receiver.
	0 = fixed at a preset level (see REG10)
	1 = enabled
0 + + 1 +	REG12(0)
Output data flow	0 = output data is pushed to the next
now	module (for example to COM-2001)
	1 = output data is pulled by next module
	(for example by the COM-4004)
	REG12(1)
Reserved	REG12(2) must be 0 for normal
	operation (1 is reserved for tests)
Bias removal	In cases where the input samples (from
	an external A/D converter) are biased, it
	can be helpful to remove the bias using a
	low-pass filter. If not removed, the bias
	may degrade the "LO leakage"
	performance as a spectral line will be
	noticeable at the output center frequency.
	DC biases are removed independently on
	the I and Q channels. The bias removal
	averages the bias over 1024 consecutive
	input samples after decimation D.
	0 = disabled
	1 = enabled
	REG12(3)
Spectrum	Invert baseband spectrum at the input (or
Inversion	not) to compensate for any spectrum
	inversion occurring prior to the COM-
	8005 (for example in a COM-30xx
	receiver).
	0 = no spectrum inversion
	1 = spectrum inversion
	REG12(4)

Writing to REG12 resets the output interface. When interfacing with the COM-4004 70 MHz modulator, any configuration change in the COM-4004 should be followed by an interface reset.


Baseline configurations can be found at <u>www.comblock.com/tsbasic_settings.htm</u> and imported into the ComBlock assembly using the ComBlock Control Center File | Import menu.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. The COM-8005 signal traces are defined as follows:

Trace 1 signals	Format	Nominal sampling rate	Buffer length (samples)
1: input from COM-300x receiver: I- channel	8-bit unsigned (8MSB /10)	f _{CLK_IN}	512
2: I-channel after frequency translation and decimation	8-bit signed (8MSB /10)	f _{CLK_IN} /decimation	512
3: Q-channel after frequency translation, decimation and delay	8-bit signed (8MSB /10)	f _{CLK_IN}	512
Trace 2 signals	Format	Nominal	Capture
0		sampling rate	length (samples)
1: input from COM-300x receiver: Q- channel	8-bit unsigned. (8MSB /10)		0
1: input from COM-300x receiver: Q-	unsigned. (8MSB	rate	(samples)

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing I/Q baseband input signal from RF receiver

Operation

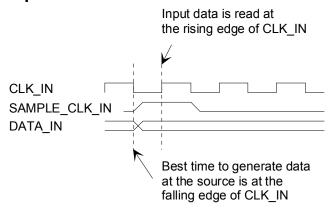
AGC

Because the COM-8005 can be connected directly to a RF receiver, it is capable of controlling the RF receiver gain. The purpose of the AGC is to make full use of the external A/D dynamic range while preventing saturation.

The AGC gain can be enabled or fixed at a given level (for example during level measurements).

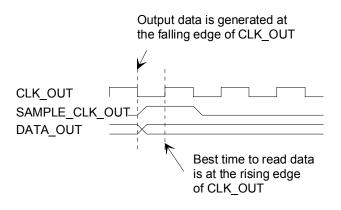
The AGC circuit assumes that the input consists of two complex 10-bit samples, unsigned format (consistent with the COM-300x family of RF receivers).

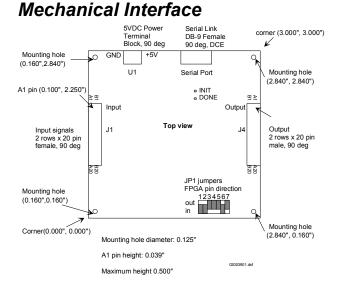
Troubleshooting

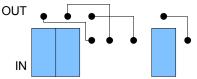

Cannot detect COM-8005 from the ComBlock Control Center

Please check that there is an input module connected to connector J1 and that there is an input clock on pin A1 (CLK IN).

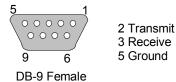
Timing


The I/O signals are synchronous with the rising edge of the reference clock CLK (i.e. all signals transitions always occur after the rising edge of the reference clock CLK). The maximum CLK frequency is 40 MHz.

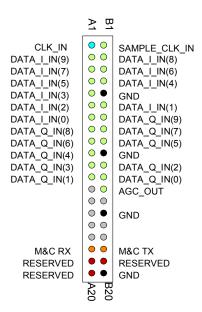

Input


Output

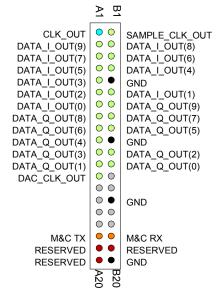
(REG11 bit1 = 0)

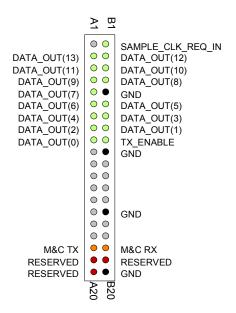

Schematics

The board schematics are available on-line at <u>http://comblock.com/download/com_8001schemati</u> <u>cs.pdf</u>


Pinout

Serial Link P1


The DB-9 connector is wired as data circuit terminating equipment (DCE). Connection to a PC is over a straight-through cable. No null modem or gender changer is required. This connection can only be used for ComBlock remote monitoring and control. It cannot be used for data stream transfer.


Input Connector J1

Output Connector J4

This connector is used when output data is pushed out (configuration REG11 bit 1 = 0).

This connector is used when output data is pulled out by the next module (configuration REG11 bit 1 = 1).

I/O Compatibility List

(not an exhaustive list)	
Input	Output
<u>COM-3001/2/3/4/5/6/7/8/9</u>	COM-2001 Digital-to-
RF / IF / baseband	Analog Conversion,
receivers	Baseband
	<u>COM-4004</u> 70 MHz IF
	Modulator
	<u>COM-1023</u> BER
	generator, Additive White
	Gaussian Noise Generator
	COM-1024 Multipath
	simulator.

Configuration Management

This specification is to be used in conjunction with VHDL software revision 4

It is possible to read back the option and version of the active software currently configuring the FPGA using the ComBlock Control Center. Highlight the COM-8005 module and click on the settings button (third from left). The option and version are listed at the bottom of the (advanced) configuration panel.

ComBlock Ordering Information

COM-8005 SIGNAL DELAY / SATELLITE SIMULATOR

MSS • 18221-A Flower Hill Way • Gaithersburg, Maryland 20879 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com